45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use and Isolation of Urinary Exosomes as Biomarkers for Diabetic Nephropathy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes represents a major threat to public health and the number of patients is increasing alarmingly in the global scale. Particularly, the diabetic kidney disease (nephropathy, DN) together with its cardiovascular complications cause immense human suffering, highly increased risk of premature deaths, and lead to huge societal costs. DN is first detected when protein appears in urine (microalbuminuria). As in other persisting proteinuric diseases (like vasculitis) it heralds irreversible damage of kidney functions up to non-functional (end-stage) kidney and ultimately calls for kidney replacement therapy (dialysis or kidney transplantation). While remarkable progress has been made in understanding the genetic and molecular factors associating with chronic kidney diseases, breakthroughs are still missing to provide comprehensive understanding of events and mechanisms associated. Non-invasive diagnostic tools for early diagnostics of kidney damage are badly needed. Exosomes – small vesicular structures present in urine are released by all cell types along kidney structures to present with distinct surface assembly. Furthermore, exosomes carry a load of special proteins and nucleic acids. This “cargo” faithfully reflects the physiological state of their respective cells of origin and appears to serve as a new pathway for downstream signaling to target cells. Accordingly, exosome vesicles are emerging as a valuable source for disease stage-specific information and as fingerprints of disease progression. Unfortunately, technical issues of exosome isolation are challenging and, thus, their full potential remains untapped. Here, we review the molecular basis of exosome secretion as well as their use to reveal events along the nephron. In addition to novel molecular information, the new methods provide the needed accurate, personalized, non-invasive, and inexpensive future diagnostics.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Body fluid derived exosomes as a novel template for clinical diagnostics

          Background Exosomes are small membrane vesicles with a size of 40-100 nm that are released by different cell types from a late endosomal cellular compartment. They can be found in various body fluids including plasma, malignant ascites, urine, amniotic fluid and saliva. Exosomes contain proteins, miRNAs and mRNAs (exosome shuttle RNA, esRNA) that could serve as novel platform for diagnosis. Method We isolated exosomes from amniotic fluid, saliva and urine by differential centrifugation on sucrose gradients. Marker proteins were identified by Western blot and FACS analysis after adsorption of exosomes to latex beads. We extracted esRNA from exosomes, carried out RT-PCR, and analyzed amplified products by restriction length polymorphism. Results Exosomes were positive for the marker proteins CD24, CD9, Annexin-1 and Hsp70 and displayed the correct buoyant density and orientation of antigens. In sucrose gradients the exosomal fractions contained esRNA that could be isolated with sufficient quantity for further analysis. EsRNAs were protected in exosomes from enzymatic degradation. Amniotic fluid esRNA served as template for the typing of the CD24 single nucleotide polymorphism (rs52812045). It also allowed sex determination of the fetus based on the detection of the male specific ZFY gene product. Conclusions Our data demonstrate that exosomes from body fluids carry esRNAs which can be analyzed and offers access to the transcriptome of the host organism. The exosomal lipid bilayer protects the genetic information from degradation. As the isolation of exosomes is a minimally invasive procedure, this technique opens new possibilities for diagnostics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large-scale proteomics and phosphoproteomics of urinary exosomes.

            Normal human urine contains large numbers of exosomes, which are 40- to 100-nm vesicles that originate as the internal vesicles in multivesicular bodies from every renal epithelial cell type facing the urinary space. Here, we used LC-MS/MS to profile the proteome of human urinary exosomes. Overall, the analysis identified 1132 proteins unambiguously, including 177 that are represented on the Online Mendelian Inheritance in Man database of disease-related genes, suggesting that exosome analysis is a potential approach to discover urinary biomarkers. We extended the proteomic analysis to phosphoproteomic profiling using neutral loss scanning, and this yielded multiple novel phosphorylation sites, including serine-811 in the thiazide-sensitive Na-Cl co-transporter, NCC. To demonstrate the potential use of exosome analysis to identify a genetic renal disease, we carried out immunoblotting of exosomes from urine samples of patients with a clinical diagnosis of Bartter syndrome type I, showing an absence of the sodium-potassium-chloride co-transporter 2, NKCC2. The proteomic data are publicly accessible at http://dir.nhlbi.nih.gov/papers/lkem/exosome/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation.

              Exosomes are 60-100-nm membrane vesicles that are secreted into the extracellular milieu as a consequence of multivesicular body fusion with the plasma membrane. Here we determined the protein and lipid compositions of highly purified human B cell-derived exosomes. Mass spectrometric analysis indicated the abundant presence of major histocompatibility complex (MHC) class I and class II, heat shock cognate 70, heat shock protein 90, integrin alpha 4, CD45, moesin, tubulin (alpha and beta), actin, G(i)alpha(2), and a multitude of other proteins. An alpha 4-integrin may direct B cell-derived exosomes to follicular dendritic cells, which were described previously as potential target cells. Clathrin, heat shock cognate 70, and heat shock protein 90 may be involved in protein sorting at multivesicular bodies. Exosomes were also enriched in cholesterol, sphingomyelin, and ganglioside GM3, lipids that are typically enriched in detergent-resistant membranes. Most exosome-associated proteins, including MHC class II and tetraspanins, were insoluble in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS)-containing buffers. Multivesicular body-linked MHC class II was also resistant to CHAPS whereas plasma membrane-associated MHC class II was solubilized readily. Together, these data suggest that recruitment of membrane proteins from the limiting membranes into the internal vesicles of multivesicular bodies may involve their incorporation into tetraspanin-containing detergent-resistant membrane domains.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                11 August 2014
                26 September 2014
                2014
                : 5
                : 149
                Affiliations
                [1] 1Centre for BioAnalytical Sciences (CBAS), Dublin City University , Dublin, Ireland
                Author notes

                Edited by: Barbara Lewko, Medical University of Gdansk, Poland

                Reviewed by: Hiroki Mizukami, Hirosaki University Graduate School of Medicine, Japan; Alan J. Davidson, The University of Auckland, New Zealand

                *Correspondence: Harry Holthofer, Centre for BioAnalytical Sciences (CBAS), Dublin City University, Collins Avenue, Glasnevin, D9, Dublin, Ireland e-mail: harry.holthofer@ 123456dcu.ie

                This article was submitted to Diabetes, a section of the journal Frontiers in Endocrinology.

                Article
                10.3389/fendo.2014.00149
                4176463
                25309511
                5725d559-bd22-41d5-a7f0-582f162e87a6
                Copyright © 2014 Musante, Tataruch and Holthofer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2014
                : 05 September 2014
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 116, Pages: 12, Words: 11077
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                exosomes,extracellular vesicles,urine,diabetic nephropathy,podocyte
                Endocrinology & Diabetes
                exosomes, extracellular vesicles, urine, diabetic nephropathy, podocyte

                Comments

                Comment on this article