23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience.

      International Journal of Radiation Oncology, Biology, Physics
      Adult, Aged, Aged, 80 and over, Brain Neoplasms, diagnosis, radiotherapy, Carbon Radioisotopes, diagnostic use, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Particle Accelerators, Radiotherapy Planning, Computer-Assisted, Stereotaxic Techniques, Tomography, Emission-Computed, Tomography, X-Ray Computed

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (a) To implement a fully automatic method to integrate (11)C-methionine positron emission tomography (MET-PET) data into stereotactic radiation treatment planning using the commercially available BrainLAB System, by means of CT/MET-PET image fusion. (b) To validate the fully automatic CT/MET-PET image fusion technique with respect to accuracy and robustness. (c) To give a short glance at the clinical consequences for patients with brain tumors. In 12 patients with brain tumors (9 meningeomas, 3 gliomas), CT, MRI, and MET-PET were performed for stereotactic fractionated radiation treatment planning. The CT and MET-PET investigations were performed using a relocatable mask for head fixation. Fifteen external reference markers (5 on each lateral and 5 on the frontal localizer plate) that could be identified in CT and MET-PET were applied on the stereotactic localizer frame; the marker positions were exactly defined for both investigations. The MRI/CT fusion was done completely automatically. The CT/MET-PET fusion was performed using two different methods: The gold standard was the CT/PET fusion based on the reference markers, and the test method was the automatic, intensity-based CT/PET fusion, independent of the external markers. The markers visible on CT and transmission PET were matched using a point-to-line matching algorithm. To quantify the amount of misregistration, the two fusion methods were compared by calculating the mean value of deviation between corresponding points inside a cubic volume of interest of > or =512 cm(3) defined within the cranial cavity. The gross tumor volume (CT/MRI) outlined on CT and T1-MRI with contrast medium was compared with the gross tumor volume (PET) defined in the reoriented MET-PET data sets. The clinical impact of MET-PET in tumor volume definition for stereotactic radiotherapy will be discussed. The fully automatic integration of MET-PET into stereotactic radiation treatment planning was successfully realized in all patients investigated. Mean deviation of the intensity-based automatic CT/PET fusion compared with the external marker-based gold standard was 2.4 mm; the standard deviation was 0.5. The algorithm's robustness was evaluated, and the discrepancy of fusion results due to different initial image alignments was determined to be below 1 mm inside the test volume of interest. In patients with meningiomas and gliomas, MET-PET was shown to deliver additional information concerning tumor extension. The precision of the automatic CT/PET image fusion was high. A mean deviation of 2.4 mm is acceptable, considering that it is approximately equal to the pixel size of the PET data sets. MET-PET improves target volume definition for stereotactic fractionated radiotherapy of meningiomas and gliomas.

          Related collections

          Author and article information

          Comments

          Comment on this article