23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Helping everyone do better: a call for validation studies of routinely recorded health data

      editorial

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There has been a surge of availability and use for research of routinely collected electronic health data, such as electronic health records, health administrative data, and disease registries. Symptomatic of this surge, in 2012, Pharmacoepidemiology and Drug Safety (PDS) published a supplemental issue containing several reviews of validated methods for identifying health outcomes using routine health data,1 focusing on databases feeding the US Mini-Sentinel Program.2 In one of the review papers of the PDS Supplement, Carnahan3 acknowledged that while ample validated algorithms exist for major health events, for example, cardiovascular events, validated methods of identifying many health outcomes are lacking. Furthermore, the referenced studies focused on algorithms based on coding sets used in the United States (eg, ICD-9) to identify events from US databases, set within the US health care system. This leaves out an entire segment of routine databases, most notably, Nordic national registries or other European databases such as Clinical Practice Research Datalink (CPRD), The Heatlh Improvement Network (THIN) Hospital Episode Statistics (HES), or PHARMO, all of which are set in health care systems that are differently run and financed than those in the United States. Since other systems function differently, and the databases contain different variables, validation of health status in US data may not always be generalizable.5–9 Many validation studies have been done among these various resources,10–12 but the work is far from complete, as shown in a systematic review of validation studies of the UK-based Clinical Practice Research Datalink, published in 2010.13 Some algorithms may become outdated because of changes in coding or medical practices; new diseases, without clear representation in classification systems, may emerge. Furthermore, in October 2015, the United States adopted ICD-10,14 while ICD-11 is looming on the horizon.15 Clinical Epidemiology has published and continues to publish studies that describe the validity of algorithms in routinely recorded health data, such as validation of medication use in hospitals,16,17 cancer characteristics and complications,18–20 or events related to reproductive and fetal medicine,21,22 to name just a few examples. An “algorithm” in the present context refers to a combination of values of routinely collected variables that allow identification of cases of a given disease or other health event without having to contact or examine the patient. For example, an algorithm based on a combination of diagnostic ICD-10 codes E10-E11 and medication ATC codes A10 may identify patients with diabetes. The commonly evaluated aspects of an algorithm’s validity are positive predictive value (proportion of algorithm-positive patients who truly have the disease of interest) and sensitivity (proportion of patients with the disease of interest who are algorithm-positive), and their counterparts negative predictive value (proportion of algorithm-negative persons without the disease of interest) and specificity (proportion of persons without the disease who are algorithm-negative). Validity of entire data sources is commonly measured by their completeness (proportion of true cases of a disease captured by a data source). A comprehensive review of methods for validating algorithms to identify disease cohorts from health administrative data, with accompanying reporting guidelines for such work, was published by the Journal of Clinical Epidemiology in 2011.23 Clinical Epidemiology is hereby issuing a targeted call for papers that report on results of validation studies. We are interested in publishing both original validation studies and systematic reviews, using various types of reference (“gold”) standards, such as review of medical charts or comparison with other data sources. Several resources are available to guide reporting, including the 2011 guidelines mentioned above,23 as well as the STARD Checklist,24 and the RECORD Checklist.25,26 Please take advantage of these resources in preparing your high-quality submissions. Some may think of validation work as mundane, a mere poor relative of the “real” original research. We subscribe to a different viewpoint. First, misclassification of study variables threatens the validity of research findings.27 Since epidemiologic research is “an exercise in measurement”,28 high-quality original research is unthinkable without accurate or accurately calibrated instruments. In our editorial experience, evidence of data validity is routinely requested by article referees. Second, following from above, results of validation studies allow epidemiologists to assess the extent of misclassification and estimate its impact on the study results. Third, shining the spotlight on validation studies may activate a feedback loop: physicians may become even more motivated to use systematic coding schemes keeping in mind that the data they feed into the routine databases will be used for research that will ultimately benefit their patients. Last, but not least, validation studies are frequently cited. For example, systematic reviews by Khan et al29 and Herrett et al,13 published in 2010, have already received more than 240 and 350 citations, respectively. We hope you find our arguments compelling and look forward to receiving your validation study submissions.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement

          Routinely collected health data, obtained for administrative and clinical purposes without specific a priori research goals, are increasingly used for research. The rapid evolution and availability of these data have revealed issues not addressed by existing reporting guidelines, such as Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). The REporting of studies Conducted using Observational Routinely collected health Data (RECORD) statement was created to fill these gaps. RECORD was created as an extension to the STROBE statement to address reporting items specific to observational studies using routinely collected health data. RECORD consists of a checklist of 13 items related to the title, abstract, introduction, methods, results, and discussion section of articles, and other information required for inclusion in such research reports. This document contains the checklist and explanatory and elaboration information to enhance the use of the checklist. Examples of good reporting for each RECORD checklist item are also included herein. This document, as well as the accompanying website and message board (http://www.record-statement.org), will enhance the implementation and understanding of RECORD. Through implementation of RECORD, authors, journals editors, and peer reviewers can encourage transparency of research reporting.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            External review and validation of the Swedish national inpatient register

            Background The Swedish National Inpatient Register (IPR), also called the Hospital Discharge Register, is a principal source of data for numerous research projects. The IPR is part of the National Patient Register. The Swedish IPR was launched in 1964 (psychiatric diagnoses from 1973) but complete coverage did not begin until 1987. Currently, more than 99% of all somatic (including surgery) and psychiatric hospital discharges are registered in the IPR. A previous validation of the IPR by the National Board of Health and Welfare showed that 85-95% of all diagnoses in the IPR are valid. The current paper describes the history, structure, coverage and quality of the Swedish IPR. Methods and results In January 2010, we searched the medical databases, Medline and HighWire, using the search algorithm "validat* (inpatient or hospital discharge) Sweden". We also contacted 218 members of the Swedish Society of Epidemiology and an additional 201 medical researchers to identify papers that had validated the IPR. In total, 132 papers were reviewed. The positive predictive value (PPV) was found to differ between diagnoses in the IPR, but is generally 85-95%. Conclusions In conclusion, the validity of the Swedish IPR is high for many but not all diagnoses. The long follow-up makes the register particularly suitable for large-scale population-based research, but for certain research areas the use of other health registers, such as the Swedish Cancer Register, may be more suitable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Danish National Patient Registry: a review of content, data quality, and research potential

              Background The Danish National Patient Registry (DNPR) is one of the world’s oldest nationwide hospital registries and is used extensively for research. Many studies have validated algorithms for identifying health events in the DNPR, but the reports are fragmented and no overview exists. Objectives To review the content, data quality, and research potential of the DNPR. Methods We examined the setting, history, aims, content, and classification systems of the DNPR. We searched PubMed and the Danish Medical Journal to create a bibliography of validation studies. We included also studies that were referenced in retrieved papers or known to us beforehand. Methodological considerations related to DNPR data were reviewed. Results During 1977–2012, the DNPR registered 8,085,603 persons, accounting for 7,268,857 inpatient, 5,953,405 outpatient, and 5,097,300 emergency department contacts. The DNPR provides nationwide longitudinal registration of detailed administrative and clinical data. It has recorded information on all patients discharged from Danish nonpsychiatric hospitals since 1977 and on psychiatric inpatients and emergency department and outpatient specialty clinic contacts since 1995. For each patient contact, one primary and optional secondary diagnoses are recorded according to the International Classification of Diseases. The DNPR provides a data source to identify diseases, examinations, certain in-hospital medical treatments, and surgical procedures. Long-term temporal trends in hospitalization and treatment rates can be studied. The positive predictive values of diseases and treatments vary widely (<15%–100%). The DNPR data are linkable at the patient level with data from other Danish administrative registries, clinical registries, randomized controlled trials, population surveys, and epidemiologic field studies – enabling researchers to reconstruct individual life and health trajectories for an entire population. Conclusion The DNPR is a valuable tool for epidemiological research. However, both its strengths and limitations must be considered when interpreting research results, and continuous validation of its clinical data is essential.
                Bookmark

                Author and article information

                Journal
                Clin Epidemiol
                Clin Epidemiol
                Clinical Epidemiology
                Clinical Epidemiology
                Dove Medical Press
                1179-1349
                2016
                12 April 2016
                : 8
                : 49-51
                Affiliations
                [1 ]Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
                [2 ]Department of Primary Care and Population Health, University College London, London, UK
                [3 ]Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
                [4 ]Boston Collaborative Drug Surveillance Program, Boston University School of Public Health, Boston, MA, USA
                [5 ]Department of Pediatrics and School of Epidemiology, Public Health and Preventive Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
                [6 ]Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
                [7 ]Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
                [8 ]Department of Pediatrics, University Hospital of Örebro, Sweden
                Author notes
                Correspondence: Vera Ehrenstein, Department of Clinical Epidemiology, Aarhus University Hospital, 43–45 Olof Palmes Allé, 8200 N Aarhus, Denmark, Email ve@ 123456clin.au.dk
                Article
                clep-8-049
                10.2147/CLEP.S104448
                4835131
                27110139
                572eec19-8c35-4e76-8854-3d53083e1d69
                © 2016 Ehrenstein et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Editorial

                Public health
                Public health

                Comments

                Comment on this article