19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of TAGE-RAGE System in the Pathogenesis of Diabetic Retinopathy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic complications are a leading cause of acquired blindness, end-stage renal failure, and accelerated atherosclerosis, which are associated with the disabilities and high mortality rates seen in diabetic patients. Continuous hyperglycemia is involved in the pathogenesis of diabetic micro- and macrovascular complications via various metabolic pathways, and numerous hyperglycemia-induced metabolic and hemodynamic conditions exist, including increased generation of various types of advanced glycation end-products (AGEs). Recently, we demonstrated that glyceraldehyde-derived AGEs, the predominant structure of toxic AGEs (TAGE), play an important role in the pathogenesis of angiopathy in diabetic patients. Moreover, recent evidence suggests that the interaction of TAGE with the receptor for AGEs (RAGE) elicits oxidative stress generation in numerous types of cells, all of which may contribute to the pathological changes observed in diabetic complications. In this paper, we discuss the pathophysiological role of the TAGE-RAGE system in the development and progression of diabetic retinopathy.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c).

          The exact contributions of postprandial and fasting glucose increments to overall hyperglycemia remain controversial. The discrepancies between the data published previously might be caused by the interference of several factors. To test the effect of overall glycemic control itself, we analyzed the diurnal glycemic profiles of type 2 diabetic patients investigated at different levels of HbA(1c). In 290 non-insulin- and non-acarbose-using patients with type 2 diabetes, plasma glucose (PG) concentrations were determined at fasting (8:00 A.M.) and during postprandial and postabsorptive periods (at 11:00 A.M., 2:00 P.M., and 5:00 P.M.). The areas under the curve above fasting PG concentrations (AUC(1)) and >6.1 mmol/l (AUC(2)) were calculated for further evaluation of the relative contributions of postprandial (AUC(1)/AUC(2), %) and fasting [(AUC(2) - AUC(1))/AUC(2), %] PG increments to the overall diurnal hyperglycemia. The data were compared over quintiles of HbA(1c). The relative contribution of postprandial glucose decreased progressively from the lowest (69.7%) to the highest quintile of HbA(1c) (30.5%, P < 0.001), whereas the relative contribution of fasting glucose increased gradually with increasing levels of HbA(1c): 30.3% in the lowest vs. 69.5% in the highest quintile (P < 0.001). The relative contribution of postprandial glucose excursions is predominant in fairly controlled patients, whereas the contribution of fasting hyperglycemia increases gradually with diabetes worsening. These results could therefore provide a unifying explanation for the discrepancies as observed in previous studies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria.

              (2001)
              New diagnostic criteria for diabetes based on fasting blood glucose (FBG) level were approved by the American Diabetes Association. The impact of using FBG only has not been evaluated thoroughly. The fasting and the 2-hour glucose (2h-BG) criteria were compared with regard to the prediction of mortality. Existing baseline data on glucose level at fasting and 2 hours after a 75-g oral glucose tolerance test from 10 prospective European cohort studies including 15 388 men and 7126 women aged 30 to 89 years, with a median follow-up of 8.8 years, were analyzed. Hazards ratios for death from all causes, cardiovascular disease, coronary heart disease, and stroke were estimated. Multivariate Cox regression analyses showed that the inclusion of FBG did not add significant information on the prediction of 2h-BG alone (P>.10 for various causes), whereas the addition of 2h-BG to FBG criteria significantly improved the prediction (P<.001 for all causes and P<.005 for cardiovascular disease). In a model including FBG and 2h-BG simultaneously, hazards ratios (95% confidence intervals) in subjects with diabetes on 2h-BG were 1.73 (1.45-2.06) for all causes, 1.40 (1.02-1.92) for cardiovascular disease, 1.56 (1.03-2.36) for coronary heart disease, and 1.29 (0.66-2.54) for stroke mortality, compared with the normal 2h-BG group. Compared with the normal FBG group, the corresponding hazards ratios in subjects with diabetes on FBG were 1.21 (1.01-1.44), 1.20 (0.88-1.64), 1.09 (0.71-1.67), and 1.64 (0.88-3.07), respectively. The largest number of excess deaths was observed in subjects who had impaired glucose tolerance but normal FBG levels. The 2h-BG is a better predictor of deaths from all causes and cardiovascular disease than is FBG.
                Bookmark

                Author and article information

                Journal
                J Ophthalmol
                JOP
                Journal of Ophthalmology
                Hindawi Publishing Corporation
                2090-004X
                2090-0058
                2010
                22 June 2010
                : 2010
                : 170393
                Affiliations
                1Department of Pathophysiological Science, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
                2Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan
                Author notes

                Academic Editor: Susanne Mohr

                Article
                10.1155/2010/170393
                2905918
                20652047
                5732dd0a-9853-462a-9982-e7bcf7b29c7f
                Copyright © 2010 Masayoshi Takeuchi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2009
                : 29 March 2010
                Categories
                Review Article

                Ophthalmology & Optometry
                Ophthalmology & Optometry

                Comments

                Comment on this article