163
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Invasive micropapillary carcinoma (IMPC) of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1) activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters.

          Methods

          HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp) expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay.

          Results

          In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (a widely used HIF-1α inhibitor) or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids.

          Conclusions

          MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in three-dimensional multicellular spheroid culture for biomedical research.

            Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene.

              The microenvironment of rapidly growing tumors is associated with increased energy demand and diminished vascular supply, resulting in focal areas of prominent hypoxia. A number of hypoxia-responsive genes have been associated with growing tumors, and here we demonstrate that the multidrug resistance (MDR1) gene product P-glycoprotein, a Mr approximately 170,000 transmembrane protein associated with tumor resistance to chemotherapeutics, is induced by ambient hypoxia. Initial studies using quantitative microarray analysis of RNA revealed an approximately 7-fold increase in MDR in epithelial cells exposed to hypoxia (pO(2) 20 torr, 18 h). These findings were further confirmed at the mRNA and protein level. P-Glycoprotein function was studied by analysis of verapamil-inhibitable efflux of digoxin and rhodamine 123 in intact T84 cells and revealed that hypoxia enhances P-glycoprotein function by as much as 7 +/- 0.4-fold over normoxia. Subsequent studies confirmed hypoxia-elicited MDR1 gene induction and increased P-glycoprotein expression in nontransformed, primary cultures of human microvascular endothelial cells, and analysis of multicellular spheroids subjected to hypoxia revealed increased resistance to doxorubicin. Examination of the MDR1 gene identified a binding site for hypoxia inducible factor-1 (HIF-1), and inhibition of HIF-1 expression by antisense oligonucleotides resulted in significant inhibition of hypoxia-inducible MDR1 expression and a nearly complete loss of basal MDR1 expression. Studies using luciferase promoter constructs revealed a significant increase in activity in cells subjected to hypoxia, and such hypoxia inducibility was lost in truncated constructs lacking the HIF-1 site and in HIF-1 binding site mutants. Extensions of these studies also identified a role for Sp1 in this hypoxia response. Taken together, these data indicate that the MDR1 gene is hypoxia responsive, and such results may identify hypoxia-elicited P-glycoprotein expression as a pathway for resistance of some tumors to chemotherapeutics.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2012
                4 January 2012
                : 12
                : 4
                Affiliations
                [1 ]Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena, 5/bis, 10126 Turin, Italy
                [2 ]Center of Experimental Research and Medical Sciences, University of Turin, Turin, Italy
                [3 ]Department of Biomedical Sciences and Human Oncology, University of Turin, Turin, Italy
                Article
                1471-2407-12-4
                10.1186/1471-2407-12-4
                3262753
                22217342
                57352960-f69e-4000-ad53-a76a8b6d28b1
                Copyright ©2011 Doublier et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 April 2011
                : 4 January 2012
                Categories
                Research Article

                Oncology & Radiotherapy
                muc-1,hif-1α,p-glycoprotein,invasive micropapillary breast carcinoma,doxorubicin resistance,3-d spheroids, elastase

                Comments

                Comment on this article