5
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased PHOSPHO1 expression mediates cortical bone mineral density in renal osteodystrophy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with advanced chronic kidney disease (CKD) often present with skeletal abnormalities, a condition known as renal osteodystrophy (ROD). While tissue non-specific alkaline phosphatase (TNAP) and PHOSPHO1 are critical for bone mineralization, their role in the etiology of ROD is unclear. To address this, ROD was induced in both WT and Phospho1 knockout (P1KO) mice through dietary adenine supplementation. The mice presented with hyperphosphatemia, hyperparathyroidism, and elevated levels of FGF23 and bone turnover markers. In particular, we noted that in CKD mice, bone mineral density (BMD) was increased in cortical bone ( P  < 0.05) but decreased in trabecular bone ( P  < 0.05). These changes were accompanied by decreased TNAP ( P  < 0.01) and increased PHOSPHO1 ( P  < 0.001) expression in WT CKD bones. In P1KO CKD mice, the cortical BMD phenotype was rescued, suggesting that the increased cortical BMD of CKD mice was driven by increased PHOSPHO1 expression. Other structural parameters were also improved in P1KO CKD mice. We further investigated the driver of the mineralization defects, by studying the effects of FGF23, PTH, and phosphate administration on PHOSPHO1 and TNAP expression by primary murine osteoblasts. We found both PHOSPHO1 and TNAP expressions to be downregulated in response to phosphate and PTH. The in vitro data suggest that the TNAP reduction in CKD-MBD is driven by the hyperphosphatemia and/or hyperparathyroidism noted in these mice, while the higher PHOSPHO1 expression may be a compensatory mechanism. Increased PHOSPHO1 expression in ROD may contribute to the disordered skeletal mineralization characteristic of this progressive disorder.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO).

          Disturbances in mineral and bone metabolism are prevalent in chronic kidney disease (CKD) and are an important cause of morbidity, decreased quality of life, and extraskeletal calcification that have been associated with increased cardiovascular mortality. These disturbances have traditionally been termed renal osteodystrophy and classified based on bone biopsy. Kidney Disease: Improving Global Outcomes (KDIGO) sponsored a Controversies Conference on Renal Osteodystrophy to (1) develop a clear, clinically relevant, and internationally acceptable definition and classification system, (2) develop a consensus for bone biopsy evaluation and classification, and (3) evaluate laboratory and imaging markers for the clinical assessment of patients with CKD. It is recommended that (1) the term renal osteodystrophy be used exclusively to define alterations in bone morphology associated with CKD, which can be further assessed by histomorphometry, and the results reported based on a unified classification system that includes parameters of turnover, mineralization, and volume, and (2) the term CKD-Mineral and Bone Disorder (CKD-MBD) be used to describe a broader clinical syndrome that develops as a systemic disorder of mineral and bone metabolism due to CKD, which is manifested by abnormalities in bone and mineral metabolism and/or extra-skeletal calcification. The international adoption of these recommendations will greatly enhance communication, facilitate clinical decision-making, and promote the evolution of evidence-based clinical practice guidelines worldwide.
            • Record: found
            • Abstract: found
            • Article: not found

            Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization.

            Osteoblasts mineralize bone matrix by promoting hydroxyapatite crystal formation and growth in the interior of membrane-limited matrix vesicles (MVs) and by propagating the crystals onto the collagenous extracellular matrix. Two osteoblast proteins, tissue-nonspecific alkaline phosphatase (TNAP) and plasma cell membrane glycoprotein-1 (PC-1) are involved in this process. Mutations in the TNAP gene result in the inborn error of metabolism known as hypophosphatasia, characterized by poorly mineralized bones, spontaneous fractures, and elevated extracellular concentrations of inorganic pyrophosphate (PP(i)). PP(i) suppresses the formation and growth of hydroxyapatite crystals. PP(i) is produced by the nucleoside triphosphate pyrophosphohydrolase activity of a family of isozymes, with PC-1 being the only member present in MVs. Mice with spontaneous mutations in the PC-1 gene have hypermineralization abnormalities that include osteoarthritis and ossification of the posterior longitudinal ligament of the spine. Here, we show the respective correction of bone mineralization abnormalities in knockout mice null for both the TNAP (Akp2) and PC-1 (Enpp1) genes. Each allele of Akp2 and Enpp1 has a measurable influence on mineralization status in vivo. Ex vivo experiments using cultured double-knockout osteoblasts and their MVs demonstrate normalization of PP(i) content and mineral deposition. Our data provide evidence that TNAP and PC-1 are key regulators of the extracellular PP(i) concentrations required for controlled bone mineralization. Our results suggest that inhibiting PC-1 function may be a viable therapeutic strategy for hypophosphatasia. Conversely, interfering with TNAP activity may correct pathological hyperossification because of PP(i) insufficiency.
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism.

              Inorganic phosphate is essential for ECM mineralization and also as a constituent of important molecules in cellular metabolism. Investigations of several hypophosphatemic diseases indicated that a hormone-like molecule probably regulates serum phosphate concentration. FGF23 has recently been recognized as playing important pathophysiological roles in several hypophosphatemic diseases. We present here the evidence that FGF23 is a physiological regulator of serum phosphate and 1,25-dihydroxyvitamin D (1,25[OH]2D) by generating FGF23-null mice. Disruption of the Fgf23 gene did not result in embryonic lethality, although homozygous mice showed severe growth retardation with abnormal bone phenotype and markedly short life span. The Fgf23(-/-) mice displayed significantly high serum phosphate with increased renal phosphate reabsorption. They also showed an elevation in serum 1,25(OH)2D that was due to the enhanced expression of renal 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase) from 10 days of age. These phenotypes could not be explained by currently known regulators of mineral homeostasis, indicating that FGF23 is essential for normal phosphate and vitamin D metabolism.

                Author and article information

                Journal
                J Endocrinol
                J Endocrinol
                JOE
                The Journal of Endocrinology
                Bioscientifica Ltd (Bristol )
                0022-0795
                1479-6805
                25 July 2022
                01 September 2022
                : 254
                : 3
                : 167-181
                Affiliations
                [1 ]The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh, Easter Bush, Midlothian, UK
                [2 ]Division of Nephrology , Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
                [3 ]Comparative Biomedical Sciences , The Royal Veterinary College, London, UK
                [4 ]Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
                [5 ]Centre for Stress and Age-Related Disease , University of Brighton, Brighton, UK
                Author notes
                Correspondence should be addressed to S-N Hsu or C Farquharson: h720127@ 123456gmail.com or colin.farquharson@ 123456roslin.ed.ac.uk
                Author information
                http://orcid.org/0000-0002-8014-6311
                http://orcid.org/0000-0002-4970-4039
                Article
                JOE-22-0097
                10.1530/JOE-22-0097
                9422252
                35900032
                5739534f-ff2e-426f-a8cf-9291582b5814
                © The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 22 June 2022
                : 25 July 2022
                Categories
                Research

                Endocrinology & Diabetes
                bone mineralization,bone mineral density,chronic kidney disease-mineral bone disorder,renal osteodystrophy,phospho1,tnap

                Comments

                Comment on this article

                Related Documents Log