7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct laser planting of hybrid Au-Ag/C nanostructures - nanoparticles, flakes and flowers

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate a new approach for forming hybrid metal/carbonaceous nanostructures in a controlled direct laser planting process. Au-Ag nanoclusters in amorphous or crystalline carbonaceous matrices are formed with different morphology: nanoparticles, nanoflakes, and nanoflowers. In contrast to other generation techniques our approach is simple, involving only a single laser-induced process transforming supramolecular complexes dissolved in solvent such as acetone, acetophenone, or dichloroethane into hybrid nanostructures in the laser-affected area of the substrate. The morphology of the hybrid nanostructures can be steered by controlling the deposition parameters, the composition of the liquid phase and the type of substrate, amorphous or crystalline. The carbonaceous phase of the hybrid nanostructures consists of hydrogenated amorphous carbon in the case of nanoparticles and of crystalline orthorhombic graphite of nanoscale thickness in the case of flakes and flowers. To the best of our knowledge this is the first demonstration of the fabrication of orthorhombic graphite with metal nano inclusions. The remarkable quality and regularity of the micron-sized nanoscale thickness single crystal flakes allows for cutting high resolution nano scale structures, which in combination with the metallic nano inclusions offer much design freedom for creating novel devices for nano photonic applications. The encouraging properties of the nanomaterials with different composition, size and shape stimulate the development of efficient synthesis strategies aimed at fine-tuning the functionality.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.

          Controlling the morphology of Pt nanostructures can provide a great opportunity to improve their catalytic properties and increase their activity on a mass basis. We synthesized Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution. The Pt branches supported on faceted Pd nanocrystals exhibited relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell. The Pd-Pt nanodendrites were two and a half times more active on the basis of equivalent Pt mass for the ORR than the state-of-the-art Pt/C catalyst and five times more active than the first-generation supportless Pt-black catalyst.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-harmonic generation by resonant plasmon field enhancement.

            High-harmonic generation by focusing a femtosecond laser onto a gas is a well-known method of producing coherent extreme-ultraviolet (EUV) light. This nonlinear conversion process requires high pulse intensities, greater than 10(13) W cm(-2), which are not directly attainable using only the output power of a femtosecond oscillator. Chirped-pulse amplification enables the pulse intensity to exceed this threshold by incorporating several regenerative and/or multi-pass amplifier cavities in tandem. Intracavity pulse amplification (designed not to reduce the pulse repetition rate) also requires a long cavity. Here we demonstrate a method of high-harmonic generation that requires no extra cavities. This is achieved by exploiting the local field enhancement induced by resonant plasmons within a metallic nanostructure consisting of bow-tie-shaped gold elements on a sapphire substrate. In our experiment, the output beam emitted from a modest femtosecond oscillator (100-kW peak power, 1.3-nJ pulse energy and 10-fs pulse duration) is directly focused onto the nanostructure with a pulse intensity of only 10(11) W cm(-2). The enhancement factor exceeds 20 dB, which is sufficient to produce EUV wavelengths down to 47 nm by injection with an argon gas jet. The method could form the basis for constructing laptop-sized EUV light sources for advanced lithography and high-resolution imaging applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures.

              Platinum-on-palladium bimetallic heterogeneous nanostructures were prepared using a sequential synthetic method, in which 3-nm Pt particles grew on the surfaces of 5-nm Pd nanoparticles. Electrochemical study of carbon-supported Pt-on-Pd heteronanostructures shows not only enhancement in electrocatalytic activity for oxygen reduction reaction (ORR) but also much improved stability in comparison to a commercial platinum catalyst (E-TEK, 20 wt % Pt, diameter: 2.5 nm). The greatly suppressed hydroxyl adsorption on active sites by introducing Pd was attributed to the enhanced activity, while the retention of active surface area, morphology, and composition because of the large overall bimetallic particle size and unique architectures could be the key factors for the much improved stability over 30,000 cycles. Our work shows heterogeneous platinum-on-metal bimetallic nanostructures offer new opportunities to the design of hierarchically ordered multifunctional fuel cell catalysts.
                Bookmark

                Author and article information

                Journal
                2015-09-09
                Article
                1509.02690
                574eb9fb-f7b7-4bf7-b097-74a44cafcd05

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                7 pages, 3 figures
                physics.chem-ph cond-mat.mtrl-sci physics.optics

                Condensed matter,Optical materials & Optics,Physical chemistry
                Condensed matter, Optical materials & Optics, Physical chemistry

                Comments

                Comment on this article