3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reservoir Computing Using Non-Uniform Binary Cellular Automata

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Reservoir Computing (RC) paradigm utilizes a dynamical system, i.e., a reservoir, and a linear classifier, i.e., a read-out layer, to process data from sequential classification tasks. In this paper the usage of Cellular Automata (CA) as a reservoir is investigated. The use of CA in RC has been showing promising results. In this paper, selected state-of-the-art experiments are reproduced. It is shown that some CA-rules perform better than others, and the reservoir performance is improved by increasing the size of the CA reservoir itself. In addition, the usage of parallel loosely coupled CA-reservoirs, where each reservoir has a different CA-rule, is investigated. The experiments performed on quasi-uniform CA reservoir provide valuable insights in CA reservoir design. The results herein show that some rules do not work well together, while other combinations work remarkably well. This suggests that non-uniform CA could represent a powerful tool for novel CA reservoir implementations.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Real-time computation at the edge of chaos in recurrent neural networks.

          Depending on the connectivity, recurrent networks of simple computational units can show very different types of dynamics, ranging from totally ordered to chaotic. We analyze how the type of dynamics (ordered or chaotic) exhibited by randomly connected networks of threshold gates driven by a time-varying input signal depends on the parameters describing the distribution of the connectivity matrix. In particular, we calculate the critical boundary in parameter space where the transition from ordered to chaotic dynamics takes place. Employing a recently developed framework for analyzing real-time computations, we show that only near the critical boundary can such networks perform complex computations on time series. Hence, this result strongly supports conjectures that dynamical systems that are capable of doing complex computational tasks should operate near the edge of chaos, that is, the transition from ordered to chaotic dynamics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Edge of chaos and prediction of computational performance for neural circuit models.

            We analyze in this article the significance of the edge of chaos for real-time computations in neural microcircuit models consisting of spiking neurons and dynamic synapses. We find that the edge of chaos predicts quite well those values of circuit parameters that yield maximal computational performance. But obviously it makes no prediction of their computational performance for other parameter values. Therefore, we propose a new method for predicting the computational performance of neural microcircuit models. The new measure estimates directly the kernel property and the generalization capability of a neural microcircuit. We validate the proposed measure by comparing its prediction with direct evaluations of the computational performance of various neural microcircuit models. The proposed method also allows us to quantify differences in the computational performance and generalization capability of neural circuits in different dynamic regimes (UP- and DOWN-states) that have been demonstrated through intracellular recordings in vivo.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              Pattern Recognition in a Bucket

                Bookmark

                Author and article information

                Journal
                2017-02-13
                Article
                1702.03812
                57543a11-499e-4c04-abbc-2a0f1d8ea0f0

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.ET cs.AI

                Artificial intelligence,General computer science
                Artificial intelligence, General computer science

                Comments

                Comment on this article