8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hemostatic agents for prehospital hemorrhage control: a narrative review

      review-article
      Military Medical Research
      BioMed Central
      Hemostatic agent, Hemorrhage control, Trauma

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hemorrhage is the leading cause of preventable death in combat trauma and the secondary cause of death in civilian trauma. A significant number of deaths due to hemorrhage occur before and in the first hour after hospital arrival. A literature search was performed through PubMed, Scopus, and Institute of Scientific Information databases for English language articles using terms relating to hemostatic agents, prehospital, battlefield or combat dressings, and prehospital hemostatic resuscitation, followed by cross-reference searching. Abstracts were screened to determine relevance and whether appropriate further review of the original articles was warranted. Based on these findings, this paper provides a review of a variety of hemostatic agents ranging from clinically approved products for human use to newly developed concepts with great potential for use in prehospital settings. These hemostatic agents can be administered either systemically or locally to stop bleeding through different mechanisms of action. Comparisons of current hemostatic products and further directions for prehospital hemorrhage control are also discussed.

          Related collections

          Most cited references207

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial.

          Tranexamic acid can reduce bleeding in patients undergoing elective surgery. We assessed the effects of early administration of a short course of tranexamic acid on death, vascular occlusive events, and the receipt of blood transfusion in trauma patients. This randomised controlled trial was undertaken in 274 hospitals in 40 countries. 20 211 adult trauma patients with, or at risk of, significant bleeding were randomly assigned within 8 h of injury to either tranexamic acid (loading dose 1 g over 10 min then infusion of 1 g over 8 h) or matching placebo. Randomisation was balanced by centre, with an allocation sequence based on a block size of eight, generated with a computer random number generator. Both participants and study staff (site investigators and trial coordinating centre staff) were masked to treatment allocation. The primary outcome was death in hospital within 4 weeks of injury, and was described with the following categories: bleeding, vascular occlusion (myocardial infarction, stroke and pulmonary embolism), multiorgan failure, head injury, and other. All analyses were by intention to treat. This study is registered as ISRCTN86750102, Clinicaltrials.govNCT00375258, and South African Clinical Trial RegisterDOH-27-0607-1919. 10 096 patients were allocated to tranexamic acid and 10 115 to placebo, of whom 10 060 and 10 067, respectively, were analysed. All-cause mortality was significantly reduced with tranexamic acid (1463 [14.5%] tranexamic acid group vs 1613 [16.0%] placebo group; relative risk 0.91, 95% CI 0.85-0.97; p=0.0035). The risk of death due to bleeding was significantly reduced (489 [4.9%] vs 574 [5.7%]; relative risk 0.85, 95% CI 0.76-0.96; p=0.0077). Tranexamic acid safely reduced the risk of death in bleeding trauma patients in this study. On the basis of these results, tranexamic acid should be considered for use in bleeding trauma patients. UK NIHR Health Technology Assessment programme, Pfizer, BUPA Foundation, and J P Moulton Charitable Foundation. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Death on the battlefield (2001–2011)

            Journal of Trauma and Acute Care Surgery, 73, S431-S437
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing

              Developing injectable antibacterial and conductive shape memory hemostatic with high blood absorption and fast recovery for irregularly shaped and noncompressible hemorrhage remains a challenge. Here we report injectable antibacterial conductive cryogels based on carbon nanotube (CNT) and glycidyl methacrylate functionalized quaternized chitosan for lethal noncompressible hemorrhage hemostasis and wound healing. These cryogels present robust mechanical strength, rapid blood-triggered shape recovery and absorption speed, and high blood uptake capacity. Moreover, cryogels show better blood-clotting ability, higher blood cell and platelet adhesion and activation than gelatin sponge and gauze. Cryogel with 4 mg/mL CNT (QCSG/CNT4) shows better hemostatic capability than gauze and gelatin hemostatic sponge in mouse-liver injury model and mouse-tail amputation model, and better wound healing performance than Tegaderm™ film. Importantly, QCSG/CNT4 presents excellent hemostatic performance in rabbit liver defect lethal noncompressible hemorrhage model and even better hemostatic ability than Combat Gauze in standardized circular liver bleeding model.
                Bookmark

                Author and article information

                Contributors
                henry.peng@drdc-rddc.gc.ca
                Journal
                Mil Med Res
                Mil Med Res
                Military Medical Research
                BioMed Central (London )
                2095-7467
                2054-9369
                25 March 2020
                25 March 2020
                2020
                : 7
                : 13
                Affiliations
                GRID grid.1463.0, ISNI 0000 0001 0692 6582, Defence Research and Development Canada, Toronto Research Centre, ; 1133 Sheppard Avenue West, Toronto, ON M3K 2C9 Canada
                Article
                241
                10.1186/s40779-020-00241-z
                7093954
                32209132
                5758f917-7532-4126-890b-7e9de4abcad5
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 August 2019
                : 11 March 2020
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                hemostatic agent,hemorrhage control,trauma
                hemostatic agent, hemorrhage control, trauma

                Comments

                Comment on this article