29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sterile Testis Complementation with Spermatogonial Lines Restores Fertility to DAZL-Deficient Rats and Maximizes Donor Germline Transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite remarkable advances in assisted reproductive capabilities ∼4% of all couples remain involuntarily infertile. In almost half of these cases, a lack of conception can in some measure be attributed to the male partner, wherein de novo Y-chromosomal deletions of sperm-specific Deleted-in-Azoospermia ( DAZ) genes are particularly prevalent. In the current study, long-term cultures of rat spermatogonial stem cells were evaluated after cryo-storage for their potential to restore fertility to rats deficient in the DAZ-like ( DAZL) gene. Detailed histological analysis of DAZL-deficient rat testes revealed an apparently intact spermatogonial stem cell compartment, but clear failure to produce mature haploid gametes resulting in infertility. After proliferating >1 million-fold in cell number during culture post-thaw, as few as 50,000 donor spermatogonia transplanted into only a single testis/recipient effectively restored fecundity to DAZL-deficient rats, yielding 100% germline transmission to progeny by natural mating. Based on these results, the potency and efficacy of this donor stem cell line for restoring fertility to azoospermic rodents is currently unprecedented. Prospectively, similar successes in humans could be directly linked to the feasibility of obtaining enough fully functional spermatogonial stem cells from minimal testis biopsies to be therapeutically effective. Thus, regeneration of sperm production in this sterile recipient provides an advanced pre-clinical model for optimizing the efficacy of stem cell therapies to cure a paradoxically increasing number of azoospermic men. This includes males that are rendered infertile by cancer therapies, specific types of endocrine or developmental defects, and germline-specific de novo mutations; all of whom may harbor healthy sources of their own spermatogonial stem cells for treatment.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term proliferation in culture and germline transmission of mouse male germline stem cells.

          Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>10(14)-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of infertility: research advances and clinical challenges.

            Reproduction is required for the survival of all mammalian species, and thousands of essential 'sex' genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation of pluripotent stem cells from neonatal mouse testis.

              Although germline cells can form multipotential embryonic stem (ES)/embryonic germ (EG) cells, these cells can be derived only from embryonic tissues, and such multipotent cells have not been available from neonatal gonads. Here we report the successful establishment of ES-like cells from neonatal mouse testis. These ES-like cells were phenotypically similar to ES/EG cells except in their genomic imprinting pattern. They differentiated into various types of somatic cells in vitro under conditions used to induce the differentiation of ES cells and produced teratomas after inoculation into mice. Furthermore, these ES-like cells formed germline chimeras when injected into blastocysts. Thus, the capacity to form multipotent cells persists in neonatal testis. The ability to derive multipotential stem cells from the neonatal testis has important implications for germ cell biology and opens the possibility of using these cells for biotechnology and medicine.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                21 July 2009
                : 4
                : 7
                : e6308
                Affiliations
                [1 ]Department of Chemistry, University of Indiana, Bloomington, Indiana, United States of America
                [2 ]Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                [3 ]Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                [4 ]The Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                The University of Hong Kong, China
                Author notes

                Conceived and designed the experiments: FKH. Performed the experiments: TER KMC FKH. Analyzed the data: TER KMC CTD REH FKH. Contributed reagents/materials/analysis tools: KMC CTD REH FKH. Wrote the paper: FKH.

                Article
                09-PONE-RA-09740R1
                10.1371/journal.pone.0006308
                2710001
                19621088
                57617f48-2c6d-46e1-b04c-999e03bf067e
                Richardson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 April 2009
                : 24 June 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Developmental Biology/Germ Cells
                Developmental Biology/Stem Cells
                Pediatrics and Child Health/Child Development
                Pediatrics and Child Health/Pediatric Oncology
                Pediatrics and Child Health/Pediatric Urology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article