17
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      1,25(OH) 2D 3 Strengthens the Vasculogenesis of Multipotent Mesenchymal Stromal Cells from Rat Bone Marrow by Regulating the PI3K/AKT Pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Multipotent mesenchymal stromal cells (MSCs) have recently been reported to promote vasculogenesis by differentiating into endothelial cells and releasing numerous cytokines and paracrine factors. However, due to low cell activity, their potential for clinical application is not very satisfactory. This study aimed to explore the effects and mechanisms of 1,25-dihydroxyvitamin D (1,25(OH) 2D 3) on the vasculogenesis of MSCs.

          Methods

          MSCs were isolated from the femurs and tibias of rats and characterized by flow cytometry. After treatment with different concentrations of 1,25(OH) 2D 3 (0 µM, 0.1 µM and 1 µM), the proliferation of MSCs was analyzed by Cell Counting Kit-8 (CCK-8), and the migratory capability was measured by Transwell assays and cell scratch tests. Capillary-like structure formation was observed by using Matrigel. Western blotting was used to detect the expression of FLK-1 and vWF to investigate the differentiation of MSCs into endothelial cells. Western blotting and gelatin zymography were used to detect the expression and activities of VEGF, MMP-2 and MMP-9 secreted by MSCs under the influence of 1,25(OH) 2D 3. Finally, the VDR antagonist pyridoxal-5-phosphate (P5P) and the PI3K/AKT pathway inhibitor LY294002 were utilized to test the phosphorylation levels of key kinases in the PI3K/AKT pathway by Western blotting and the formation of capillary-like structures in Matrigel.

          Results

          The proliferation and migratory capability of MSCs and the ability of MSCs to form a tube-like structure in Matrigel were enhanced after treatment with 1,25(OH) 2D 3. Moreover, MSCs treated with 1,25(OH) 2D 3 showed high expression of vWF and Flk-1. There was a significant increase in the expression of VEGF, MMP-2 and MMP-9 secreted by MSCs treated with 1,25(OH) 2D 3, as well as in the activity of MMP-2 and MMP-9. The phosphorylation level of AKT increased with time after 1,25(OH) 2D 3 treatment, while LY294002 weakened AKT phosphorylation. In addition, the ability to form capillary-like structures was reduced when the VDR and PI3K/AKT pathways were blocked.

          Conclusion

          This study confirmed that 1,25(OH) 2D 3 treatment can strengthen the ability of MSCs to promote vasculogenesis in vitro, and the mechanism may be related to the activation of the PI3K/AKT pathway.

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease.

          Mesenchymal stem cells (MSCs) are a prototypical adult stem cell with capacity for self-renewal and differentiation with a broad tissue distribution. Initially described in bone marrow, MSCs have the capacity to differentiate into mesoderm- and nonmesoderm-derived tissues. The endogenous role for MSCs is maintenance of stem cell niches (classically the hematopoietic), and as such, MSCs participate in organ homeostasis, wound healing, and successful aging. From a therapeutic perspective, and facilitated by the ease of preparation and immunologic privilege, MSCs are emerging as an extremely promising therapeutic agent for tissue regeneration. Studies in animal models of myocardial infarction have demonstrated the ability of transplanted MSCs to engraft and differentiate into cardiomyocytes and vasculature cells, recruit endogenous cardiac stem cells, and secrete a wide array of paracrine factors. Together, these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improved left ventricular function, induced reverse remodeling, and decreased scar size. This article reviews the current understanding of MSC biology, mechanism of action in cardiac repair, translational findings, and early clinical trial data of MSC therapy for cardiac disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular endothelial growth factor: a neurovascular target in neurological diseases.

            Brain function critically relies on blood vessels to supply oxygen and nutrients, to establish a barrier for neurotoxic substances, and to clear waste products. The archetypal vascular endothelial growth factor, VEGF, arose in evolution as a signal affecting neural cells, but was later co-opted by blood vessels to regulate vascular function. Consequently, VEGF represents an attractive target to modulate brain function at the neurovascular interface. On the one hand, VEGF is neuroprotective, through direct effects on neural cells and their progenitors and indirect effects on brain perfusion. In accordance, preclinical studies show beneficial effects of VEGF administration in neurodegenerative diseases, peripheral neuropathies and epilepsy. On the other hand, pathologically elevated VEGF levels enhance vessel permeability and leakage, and disrupt blood-brain barrier integrity, as in demyelinating diseases, for which blockade of VEGF may be beneficial. Here, we summarize current knowledge on the role and therapeutic potential of VEGF in neurological diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy.

              A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self-renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell-based strategies owing to their intrinsic capacity to self-renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                16 March 2020
                2020
                : 14
                : 1157-1167
                Affiliations
                [1 ]Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang, People’s Republic of China
                [2 ]Department of Pediatrics, The Second School of Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, People’s Republic of China
                [3 ]The First School of Medicine, Wenzhou Medical University , Wenzhou, Zhejiang, People’s Republic of China
                Author notes
                Correspondence: Xueli Cai Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University , 2 Fuxue Road, ZheJiang325000, People’s Republic of China Email cardiosherry@126.com
                Weijian Huang Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University , 2 Fuxue Road, ZheJiang325000, People’s Republic of China Email weijianhuang69@126.com
                [*]

                These authors contributed equally to this work

                Article
                222244
                10.2147/DDDT.S222244
                7083642
                5767b45b-d72c-407d-bbf1-1f8c321b8613
                © 2020 Ye et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 07 July 2019
                : 03 March 2020
                Page count
                Figures: 5, References: 42, Pages: 11
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                multipotent mesenchymal stromal cells,1,25-(oh)2d3,vasculogenesis,vitamin d receptor,pi3k/akt pathway

                Comments

                Comment on this article