1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of a phenol-based model for denervation of the abdominal aorta and its implications for aortic remodeling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Sympathetic innervation plays a pivotal role in regulating cardiovascular health, and its dysregulation is implicated in a wide spectrum of cardiovascular diseases. This study seeks to evaluate the impact of denervation of the abdominal aorta on its morphology and wall homeostasis.

          Methods

          Male and female Sprague-Dawley rats (N = 12), aged 3 months, underwent midline laparotomy for infrarenal aorta exposure. Chemical denervation was induced via a one-time topical application of 10% phenol (n = 6), whereas sham controls received phosphate-buffered saline (n = 6). Animals were allowed to recover and subsequently were sacrificed after 6 months for analysis encompassing morphology, histology, and immunohistochemistry.

          Results

          At 6 months post-treatment, abdominal aortas subjected to phenol denervation still exhibited a significant reduction in nerve fiber density compared with sham controls. Denervated aortas demonstrated reduced intima-media thickness, increased elastin fragmentation, decreased expression of vascular smooth muscle proteins (α-SMA and MYH11), and elevated adventitial vascular density. Sex-stratified analyses revealed additional dimorphic responses, particularly in aortic collagen and medial cellular density in female animals.

          Conclusions

          Single-timepoint phenol-based chemical denervation induces alterations in abdominal aortic morphology and vascular remodeling over a 6-month period. These findings underscore the potential of the sympathetic nervous system as a therapeutic target for aortic pathologies.

          Clinical Relevance

          Aortic remodeling remains an important consideration in the pathogenesis of aortic disease, including occlusive, aneurysmal, and dissection disease states. The paucity of medical therapies for the treatment of aortic disease has driven considerable interest in elucidating the pathogenesis of these conditions; new therapeutic targets are critically needed. Here, we show significant remodeling after phenol-induced denervation with morphologic, histologic, and immunohistochemical features. Future investigations should integrate sympathetic dysfunction as a potential driver of pathologic aortic wall changes with additional consideration of the sympathetic nervous system as a therapeutic target.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Vascular smooth muscle contraction in hypertension

            Abstract Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia, and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex-interacting systems such as the renin-angiotensin-aldosterone system, sympathetic nervous system, immune activation, and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin–myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase, protein Kinase C and mitogen-activated protein kinase signalling, reactive oxygen species, and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and non-coding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signalling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here, we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sympathetic nervous system overactivity and its role in the development of cardiovascular disease.

              This review examines how the sympathetic nervous system plays a major role in the regulation of cardiovascular function over multiple time scales. This is achieved through differential regulation of sympathetic outflow to a variety of organs. This differential control is a product of the topographical organization of the central nervous system and a myriad of afferent inputs. Together this organization produces sympathetic responses tailored to match stimuli. The long-term control of sympathetic nerve activity (SNA) is an area of considerable interest and involves a variety of mediators acting in a quite distinct fashion. These mediators include arterial baroreflexes, angiotensin II, blood volume and osmolarity, and a host of humoral factors. A key feature of many cardiovascular diseases is increased SNA. However, rather than there being a generalized increase in SNA, it is organ specific, in particular to the heart and kidneys. These increases in regional SNA are associated with increased mortality. Understanding the regulation of organ-specific SNA is likely to offer new targets for drug therapy. There is a need for the research community to develop better animal models and technologies that reflect the disease progression seen in humans. A particular focus is required on models in which SNA is chronically elevated.
                Bookmark

                Author and article information

                Contributors
                Journal
                JVS Vasc Sci
                JVS Vasc Sci
                JVS-Vascular Science
                Elsevier
                2666-3503
                26 March 2024
                2024
                26 March 2024
                : 5
                : 100202
                Affiliations
                [a ]Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
                [b ]Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL
                Author notes
                []Correspondence: Bin Jiang, PhD, 303 E. Superior St, SQBRC 11-526, Chicago, IL 60611 bin.jiang@ 123456northwestern.edu
                Article
                S2666-3503(24)00013-0 100202
                10.1016/j.jvssci.2024.100202
                11061754
                38694477
                5769a749-29d8-45ee-9ca8-0b5f7b1e7800
                © 2024 by the Society for Vascular Surgery. Published by Elsevier Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 November 2023
                : 11 March 2024
                Categories
                Article

                abdominal aorta,sympathetic nervous system,vascular remodeling,vascular smooth muscle cell

                Comments

                Comment on this article