22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Controlling the catalytic reduction of CO 2 by H 2 to produce CO, methanol or hydrocarbons requires stabilization of key reaction intermediates.

          Ocean acidification and climate change are expected to be two of the most difficult scientific challenges of the 21st century. Converting CO 2 into valuable chemicals and fuels is one of the most practical routes for reducing CO 2 emissions while fossil fuels continue to dominate the energy sector. Reducing CO 2 by H 2 using heterogeneous catalysis has been studied extensively, but there are still significant challenges in developing active, selective and stable catalysts suitable for large-scale commercialization. The catalytic reduction of CO 2 by H 2 can lead to the formation of three types of products: CO through the reverse water–gas shift (RWGS) reaction, methanol via selective hydrogenation, and hydrocarbons through combination of CO 2 reduction with Fischer–Tropsch (FT) reactions. Investigations into these routes reveal that the stabilization of key reaction intermediates is critically important for controlling catalytic selectivity. Furthermore, viability of these processes is contingent on the development of a CO 2-free H 2 source on a large enough scale to significantly reduce CO 2 emissions.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in catalytic hydrogenation of carbon dioxide.

          Owing to the increasing emissions of carbon dioxide (CO(2)), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO(2) in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO(2). Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO(2), offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO(2) not only reduces the increasing CO(2) buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts.

            One of the main stumbling blocks in developing rational design strategies for heterogeneous catalysis is that the complexity of the catalysts impairs efforts to characterize their active sites. We show how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al(2)O(3) methanol synthesis catalyst by using a combination of experimental evidence from bulk, surface-sensitive, and imaging methods collected on real high-performance catalytic systems in combination with density functional theory calculations. The active site consists of Cu steps decorated with Zn atoms, all stabilized by a series of well-defined bulk defects and surface species that need to be present jointly for the system to work.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries

                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2016
                2016
                : 9
                : 1
                : 62-73
                Article
                10.1039/C5EE02657A
                57723e7c-58d7-437c-88bb-d42ac97de45c
                © 2016
                History

                Comments

                Comment on this article