13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clostridium novyi-NT in cancer therapy

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The attenuated anaerobic bacterium Clostridium novyi-NT ( C. novyi-NT) is known for its ability to precisely germinate in and eradicate treatment-resistant hypoxic tumors in various experimental animal models and spontaneously occurring canine sarcomas. In this article, we review the therapeutic and toxicologic aspects of C. novyi-NT therapy, key challenges and limitations, and promising strategies to optimize its performance via recombinant DNA technology and immunotherapeutic approaches, to establish C. novyi-NT as an essential tool in cancer therapy.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokine patterns in patients with cancer: a systematic review.

            Active, but dysfunctional, immune responses in patients with cancer have been studied in several tumour types, but owing to the heterogeneity of cancer theories of common reaction mechanisms seem to be obsolete. In this Review of published clinical studies of patients with cancer, expression and interplay of the following cytokines are examined: interleukin 2, interleukin 6, interleukin 8, interleukin 10, interleukin 12, interleukin 18, tumour necrosis factor α (TNFα), transforming growth factor β (TGFβ), interferon-γ, HLA-DR, macrophage migration inhibitory factor (MIF), and C-X-C motif chemokine receptor 4 (CXCR4). Clinical data were analysed in a non-quantitative descriptive manner and interpreted with regard to experimentally established physiological cytokine interactions. The clinical cytokine pattern that emerged suggests that simultaneous immunostimulation and immunosuppression occur in patients with cancer, with increased concentrations of the cytokines MIF, TNFα, interleukin 6, interleukin 8, interleukin 10, interleukin 18, and TGFβ. This specific cytokine pattern seems to have a prognostic effect, since high interleukin 6 or interleukin 10 serum concentrations are associated with negative prognoses in independent cancer types. Although immunostimulatory cytokines are involved in local cancer-associated inflammation, cancer cells seem to be protected from immunological eradication by cytokine-mediated local immunosuppression and a resulting defect of the interleukin 12-interferon-γ-HLA-DR axis. Cytokines produced by tumours might have a pivotal role in this defect. A working hypothesis is that the cancer-specific and histology-independent uniform cytokine cascade is one of the manifestations of the underlying paraneoplastic systemic disease, and this hypothesis links the stage of cancer with both the functional status of the immune system and the patient's prognosis. Neutralisation of this cytokine pattern could offer novel and so far unexploited treatment approaches for cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary dynamics of cancer in response to targeted combination therapy

              In solid tumors, targeted treatments can lead to dramatic regressions, but responses are often short-lived because resistant cancer cells arise. The major strategy proposed for overcoming resistance is combination therapy. We present a mathematical model describing the evolutionary dynamics of lesions in response to treatment. We first studied 20 melanoma patients receiving vemurafenib. We then applied our model to an independent set of pancreatic, colorectal, and melanoma cancer patients with metastatic disease. We find that dual therapy results in long-term disease control for most patients, if there are no single mutations that cause cross-resistance to both drugs; in patients with large disease burden, triple therapy is needed. We also find that simultaneous therapy with two drugs is much more effective than sequential therapy. Our results provide realistic expectations for the efficacy of new drug combinations and inform the design of trials for new cancer therapeutics. DOI: http://dx.doi.org/10.7554/eLife.00747.001
                Bookmark

                Author and article information

                Contributors
                Journal
                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                2352-4820
                2352-3042
                06 February 2016
                June 2016
                06 February 2016
                : 3
                : 2
                : 144-152
                Affiliations
                [a ]Ludwig Center for Cancer Genetics and Therapeutics, The Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD 21287, USA
                [b ]Department of Neurology, The Johns Hopkins Medical Institutes, Baltimore, MD 21231, USA
                [c ]Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
                [d ]Department of Neurosurgery, The Johns Hopkins Medical Institutes, Baltimore, MD 21231, USA
                Author notes
                []Corresponding author. sbzhou@ 123456jhmi.edu
                [1]

                These authors contributed equally to this work.

                Article
                S2352-3042(16)00006-4
                10.1016/j.gendis.2016.01.003
                6150096
                30258882
                57779903-93e5-4275-bcd0-851c12807cf7
                Copyright © 2016, Chongqing Medical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 12 November 2015
                : 25 January 2016
                Categories
                Article

                bacteria,bacterial cancer therapy,cancer,clostridium,clostridium novyi-nt,hypoxia,immunotherapy

                Comments

                Comment on this article