17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What is preventable harm in healthcare? A systematic review of definitions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mitigating or reducing the risk of harm associated with the delivery of healthcare is a policy priority. While the risk of harm can be reduced in some instances (i.e. preventable), what constitutes preventable harm remains unclear. A standardized and clear definition of preventable harm is the first step towards safer and more efficient healthcare delivery system. We aimed to summarize the definitions of preventable harm and its conceptualization in healthcare.

          Methods

          We conducted a comprehensive electronic search of relevant databases from January 2001 to June 2011 for publications that reported a definition of preventable harm. Only English language publications were included. Definitions were coded for common concepts and themes. We included any study type, both original studies and reviews. Two reviewers screened the references for eligibility and 28% (127/460) were finally included. Data collected from studies included study type, description of the study population and setting, and data corresponding to the outcome of interest. Three reviewers extracted the data. The level of agreement between the reviewers was calculated.

          Results

          One hundred and twenty seven studies were eligible. The three most prevalent preventable harms in the included studies were: medication adverse events (33/127 studies, 26%), central line infections (7/127, 6%) and venous thromboembolism (5/127, 4%). Seven themes or definitions for preventable harm were encountered. The top three were: presence of an identifiable modifiable cause (58/132 definitions, 44%), reasonable adaptation to a process will prevent future recurrence (30/132, 23%), adherence to guidelines (22/132, 16%). Data on the validity or operational characteristic (e.g., accuracy, reproducibility) of definitions were limited.

          Conclusions

          There is limited empirical evidence of the validity and reliability of the available definitions of preventable harm, such that no single one is supported by high quality evidence. The most common definition is “presence of an identifiable, modifiable cause of harm”.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).

          This article discusses the prevention of venous thromboembolism (VTE) and is part of the Antithrombotic and Thrombolytic Therapy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Grade 1 recommendations are strong and indicate that the benefits do or do not outweigh risks, burden, and costs. Grade 2 suggestions imply that individual patient values may lead to different choices (for a full discussion of the grading, see the "Grades of Recommendation" chapter by Guyatt et al). Among the key recommendations in this chapter are the following: we recommend that every hospital develop a formal strategy that addresses the prevention of VTE (Grade 1A). We recommend against the use of aspirin alone as thromboprophylaxis for any patient group (Grade 1A), and we recommend that mechanical methods of thromboprophylaxis be used primarily for patients at high bleeding risk (Grade 1A) or possibly as an adjunct to anticoagulant thromboprophylaxis (Grade 2A). For patients undergoing major general surgery, we recommend thromboprophylaxis with a low-molecular-weight heparin (LMWH), low-dose unfractionated heparin (LDUH), or fondaparinux (each Grade 1A). We recommend routine thromboprophylaxis for all patients undergoing major gynecologic surgery or major, open urologic procedures (Grade 1A for both groups), with LMWH, LDUH, fondaparinux, or intermittent pneumatic compression (IPC). For patients undergoing elective hip or knee arthroplasty, we recommend one of the following three anticoagulant agents: LMWH, fondaparinux, or a vitamin K antagonist (VKA); international normalized ratio (INR) target, 2.5; range, 2.0 to 3.0 (each Grade 1A). For patients undergoing hip fracture surgery (HFS), we recommend the routine use of fondaparinux (Grade 1A), LMWH (Grade 1B), a VKA (target INR, 2.5; range, 2.0 to 3.0) [Grade 1B], or LDUH (Grade 1B). We recommend that patients undergoing hip or knee arthroplasty or HFS receive thromboprophylaxis for a minimum of 10 days (Grade 1A); for hip arthroplasty and HFS, we recommend continuing thromboprophylaxis > 10 days and up to 35 days (Grade 1A). We recommend that all major trauma and all spinal cord injury (SCI) patients receive thromboprophylaxis (Grade 1A). In patients admitted to hospital with an acute medical illness, we recommend thromboprophylaxis with LMWH, LDUH, or fondaparinux (each Grade 1A). We recommend that, on admission to the ICU, all patients be assessed for their risk of VTE, and that most receive thromboprophylaxis (Grade 1A).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Canadian Adverse Events Study: the incidence of adverse events among hospital patients in Canada

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scientific evidence underlying the ACC/AHA clinical practice guidelines.

              The joint cardiovascular practice guidelines of the American College of Cardiology (ACC) and the American Heart Association (AHA) have become important documents for guiding cardiology practice and establishing benchmarks for quality of care. To describe the evolution of recommendations in ACC/AHA cardiovascular guidelines and the distribution of recommendations across classes of recommendations and levels of evidence. Data from all ACC/AHA practice guidelines issued from 1984 to September 2008 were abstracted by personnel in the ACC Science and Quality Division. Fifty-three guidelines on 22 topics, including a total of 7196 recommendations, were abstracted. The number of recommendations and the distribution of classes of recommendation (I, II, and III) and levels of evidence (A, B, and C) were determined. The subset of guidelines that were current as of September 2008 was evaluated to describe changes in recommendations between the first and current versions as well as patterns in levels of evidence used in the current versions. Among guidelines with at least 1 revision or update by September 2008, the number of recommendations increased from 1330 to 1973 (+48%) from the first to the current version, with the largest increase observed in use of class II recommendations. Considering the 16 current guidelines reporting levels of evidence, only 314 recommendations of 2711 total are classified as level of evidence A (median, 11%), whereas 1246 (median, 48%) are level of evidence C. Level of evidence significantly varies across categories of guidelines (disease, intervention, or diagnostic) and across individual guidelines. Recommendations with level of evidence A are mostly concentrated in class I, but only 245 of 1305 class I recommendations have level of evidence A (median, 19%). Recommendations issued in current ACC/AHA clinical practice guidelines are largely developed from lower levels of evidence or expert opinion. The proportion of recommendations for which there is no conclusive evidence is also growing. These findings highlight the need to improve the process of writing guidelines and to expand the evidence base from which clinical practice guidelines are derived.
                Bookmark

                Author and article information

                Journal
                BMC Health Serv Res
                BMC Health Serv Res
                BMC Health Services Research
                BioMed Central
                1472-6963
                2012
                25 May 2012
                : 12
                : 128
                Affiliations
                [1 ]Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, USA
                [2 ]Knowledge and Evaluation Research Unit, Mayo Clinic, Rochester, MN, USA
                [3 ]Division of Anesthesiology and Critical Care, Mayo Clinic, Rochester, MN, USA
                [4 ]Division of Heath Care Policy Research, Mayo Clinic, Rochester, MN, USA
                [5 ]Division of Pulmonary, Critical Care, and Sleep Medicine, Mayo Clinic, Rochester, MN, USA
                [6 ]Mayo Clinic Libraries, Mayo Clinic, Rochester, MN, USA
                [7 ]Department of Radiology, Mayo Clinic, Rochester, MN, USA
                [8 ]Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
                [9 ]Division of Preventive Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
                Article
                1472-6963-12-128
                10.1186/1472-6963-12-128
                3405467
                22630817
                5779a5a5-22dd-49cb-8f37-b7c97a1808a4
                Copyright ©2012 Nabhan et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 November 2011
                : 25 May 2012
                Categories
                Research Article

                Health & Social care
                healthcare delivery,preventable harm,safety,systematic review
                Health & Social care
                healthcare delivery, preventable harm, safety, systematic review

                Comments

                Comment on this article