7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We aimed to evaluate the clinical outcomes of molecular glioblastoma (mGBM) as compared to histological GBM (hGBM) and to determine the prognostic impact of TERT mutation, EGFR amplification, and CDKN2A/B deletion on isocitrate dehydrogenase (IDH)-wildtype GBM.

          Methods

          IDH-wildtype GBM patients treated with radiation therapy (RT) between 2012 and 2019 were retrospectively analyzed. mGBM was defined as grade II-III IDH-wildtype astrocytoma without histological features of GBM but with one of the following molecular alterations: TERT mutation, EGFR amplification, or combination of whole chromosome 7 gain and whole chromosome 10 loss. Overall survival (OS) and progression-free survival (PFS) were calculated from RT and analyzed using the Kaplan–Meier method. Multivariable analysis (MVA) was performed using Cox regression to identify independent predictors of OS and PFS.

          Results

          Of the 367 eligible patients, the median follow-up was 11.7 months. mGBM and hGBM did not have significantly different OS (median: 16.6 vs 13.5 months, respectively, P = .16), nor PFS (median: 11.7 vs 7.3 months, respectively, P = .08). However, mGBM was associated with better OS (hazard ratio [HR] 0.50, 95% CI 0.29–0.88) and PFS (HR 0.43, 95% CI 0.26–0.72) than hGBM after adjusting for known prognostic factors on MVA. CDKN2A/B deletion was associated with worse OS (HR 1.57, 95% CI 1.003–2.46) and PFS (HR 1.57, 95% CI 1.04–2.36) on MVA, but TERT mutation and EGFR amplification were not.

          Conclusion

          Criteria for mGBM may require further refinement and validation. CDKN2A/B deletion, but not TERT mutation or EGFR amplification, may be an independent prognostic biomarker for IDH-wildtype GBM patients.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.

          The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

            The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies. Copyright (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              The somatic genomic landscape of glioblastoma.

              We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Neurooncol Adv
                Neurooncol Adv
                noa
                Neuro-oncology Advances
                Oxford University Press (US )
                2632-2498
                Jan-Dec 2020
                18 September 2020
                18 September 2020
                : 2
                : 1
                : vdaa126
                Affiliations
                [1 ] Department of Radiation Oncology, Washington University School of Medicine , St. Louis, Missouri, USA
                [2 ] Department of Medicine, Oncology Division, Washington University School of Medicine , St. Louis, Missouri, USA
                [3 ] Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, Missouri, USA
                [4 ] Department of Neurological Surgery, Washington University School of Medicine , St. Louis, Missouri, USA
                Author notes
                Corresponding Author: Jiayi Huang, MD, MSCI, Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, MO 63110, USA ( Jiayi.huang@ 123456wustl.edu ).

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0002-3005-4339
                http://orcid.org/0000-0002-5585-0964
                Article
                vdaa126
                10.1093/noajnl/vdaa126
                7668466
                33235995
                57813dd6-3686-46ba-9c0a-99301acc6d34
                © The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 November 2020
                Page count
                Pages: 11
                Categories
                Clinical Investigations
                AcademicSubjects/MED00300
                AcademicSubjects/MED00310

                cdkn2a/b,cimpact-now,egfr,glioblastoma,tert
                cdkn2a/b, cimpact-now, egfr, glioblastoma, tert

                Comments

                Comment on this article