Blog
About

64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The history of African trypanosomiasis

      , 1

      Parasites & Vectors

      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prehistory of African trypanosomiasis indicates that the disease may have been an important selective factor in the evolution of hominids. Ancient history and medieval history reveal that African trypanosomiasis affected the lives of people living in sub-Saharan African at all times. Modern history of African trypanosomiasis revolves around the identification of the causative agents and the mode of transmission of the infection, and the development of drugs for treatment and methods for control of the disease. From the recent history of sleeping sickness we can learn that the disease can be controlled but probably not be eradicated. Current history of human African trypanosomiasis has shown that the production of anti-sleeping sickness drugs is not always guaranteed, and therefore, new, better and cheaper drugs are urgently required.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique.

          An area-wide integrated tsetse eradication project was initiated in Zanzibar in 1994 by the International Atomic Energy Agency and the governments of Tanzania and Zanzibar, to eradicate Glossina austeni Newstead from Unguja Island (Zanzibar) using the sterile insect technique. Suppression of the tsetse population on Unguja was initiated in 1988 by applying residual pyrethroids as a pour-on formulation to livestock and by the deployment of insecticide impregnated screens in some of the forested areas. This was followed by sequential releases of gamma-sterilized male flies by light aircraft. The flies, packaged in carton release containers, were dispersed twice a week along specific flight lines separated by a distance of 1-2 km. More than 8.5 million sterile male flies were released by air from August 1994 to December 1997. A sterile to indigenous male ratio of >50:1 was obtained in mid-1995 and it increased to >100:1 by the end of 1995. As a consequence the proportion of sampled young females (1-2 ovulations), with an egg in utero in embryonic arrest or an uterus empty as a result of expulsion of a dead embryo, increased from 70% in the last quarter of 1995. In addition, the age structure of the female population became significantly distorted in favor of old flies (> or = 4 ovulations) by the end of 1995. The apparent density of the indigenous fly population declined rapidly in the last quarter of 1995, followed by a population crash in the beginning of 1996. The last trapped indigenous male and female flies were found in weeks 32 and 36, 1996, respectively. Time for 6 fly generations elapsed between the last catch of an indigenous fly and the end of the sterile male releases in December 1997.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drugs and drug resistance in African trypanosomiasis.

              Despite the many decades of use of most of the current trypanocides, we know little of their mode of action. This may in part be because most of these will act on multiple targets once inside the cell, and they derive their selective action on the parasite from selective accumulation by the pathogen. Loss of this capacity for drug uptake by the trypanosome would thus be a major cause for drug resistance. We here discuss the use of current drugs against human and veterinary African trypanosomiasis, the prevalence, causes and mechanisms of drug resistance and new developments in trypanosomiasis therapy such as the introduction of nifurtimox and DB289.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2008
                12 February 2008
                : 1
                : 3
                Affiliations
                [1 ]BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
                Article
                1756-3305-1-3
                10.1186/1756-3305-1-3
                2270819
                18275594
                Copyright © 2008 Steverding; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review

                Parasitology

                Comments

                Comment on this article