4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Facile Fluorescence Monitoring of Gut Microbial Metabolite Trimethylamine N-oxide via Molecular Recognition of Guanidinium-Modified Calixarene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Detection and quantification of trimethylamine N-oxide (TMAO), a metabolite from gut microbial, is important for the disease diagnosis such as atherosclerosis, thrombosis and colorectal cancer. In this study, a novel method was established for the sensing and quantitative detection of TMAO via molecular recognition of guanidinium-modified calixarene from complex matrix.

          Methods: Various macrocycles were tested for their abilities to serve as an artificial TMAO receptor. Using the optimized receptor, we developed an indicator displacement assay (IDA) for the facile fluorescence detection of TMAO. The quantification of TMAO was accomplished by the established calibration line after excluding the interference from the various interfering substances in artificial urine.

          Results: Among various macrocycles, water-soluble guanidinium-modified calix[5]arene (GC5A), which binds TMAO in submicromolar-level, was identified as the optimal artificial receptor for TMAO. With the aid of the GC5A•Fl (fluorescein) reporter pair, TMAO fluorescence “switch-on” sensing was achieved by IDA. The fluorescence intensity increased linearly with the elevated TMAO concentration. The detection was not significantly interfered by the various interfering substances. TMAO concentration in artificial urine was quantified using a calibration line with a detection limit of 28.88 ± 1.59 µM, within the biologically relevant low µM range. Furthermore, the GC5A•Fl reporter pair was successfully applied in analyzing human urine samples, by which a significant difference in fluorescence response was observed between the [normal + TMAO] and normal group.

          Conclusion: The proposed supramolecular approach provides a facile, low-cost and sensitive method for TMAO detection, which shows promise for tracking TMAO excretion in urine and studying chronic disease progression in humans.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide

          ABSTRACT Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease.

              Trimethylamine N-oxide (TMAO) is a biologically active molecule and is a putative promoter of chronic diseases including atherosclerosis in humans. Host intestinal bacteria produce its precursor trimethylamine (TMA) from carnitine, choline, or choline-containing compounds. Most of the TMA produced is passively absorbed into portal circulation, and hepatic flavin-dependent monooxygenases (FMOs) efficiently oxidize TMA to TMAO. Both observational and experimental studies suggest a strong positive correlation between increased plasma TMAO concentrations and adverse cardiovascular events, such as myocardial infarction, stroke, and death. However, a clear mechanistic link between TMAO and such diseases is not yet validated. Therefore, it is debated whether increased TMAO concentrations are the cause or result of these diseases. Here, we have tried to review the current understanding of the properties and physiological functions of TMAO, its dietary sources, and its effects on human metabolism. Studies that describe the potential role of TMAO in the etiology of cardiovascular and other diseases are also discussed.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2019
                24 June 2019
                : 9
                : 16
                : 4624-4632
                Affiliations
                [1 ]Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
                [2 ]College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
                Author notes
                ✉ Corresponding authors: Dong-Sheng Guo, Prof., College of Chemistry, Nankai University No. 94 Weijin Road, Nankai District, Tianjin 300071, China. Phone: +86-22-23498949; E-mail dshguo@ 123456nankai.edu.cn ; Yuefei Wang, Prof., Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, Jinghai District, Tianjin 301617, China. Phone: +86-22-59596366; E-mail wangyf0622@ 123456tjutcm.edu.cn

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov09p4624
                10.7150/thno.33459
                6643440
                57a71e7d-2c10-4290-a92f-87dab6842886
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 24 January 2019
                : 14 May 2019
                Categories
                Research Paper

                Molecular medicine
                calixarene,trimethylamine n-oxide,gut microbiota,fluorescence sensing,indicator displacement assay

                Comments

                Comment on this article