12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Major anticodon-binding region missing from an archaebacterial tRNA synthetase.

      The Journal of Biological Chemistry
      Anticodon, metabolism, Base Sequence, Binding Sites, Escherichia coli, genetics, Methanococcus, enzymology, Molecular Sequence Data, Nucleic Acid Conformation, Nucleic Acid Denaturation, RNA, Transfer, Tyr, chemistry, Saccharomyces cerevisiae, Thermodynamics, Tyrosine-tRNA Ligase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The small size of the archaebacterial Methanococcus jannaschii tyrosyl-tRNA synthetase may give insights into the historical development of tRNAs and tRNA synthetases. The L-shaped tRNA has two major arms-the acceptor.TpsiC minihelix with the amino acid attachment site and the anticodon-containing arm. The structural organization of the tRNA synthetases parallels that of tRNAs. The more ancient synthetase domain contains the active site and insertions that interact with the minihelix portion of the tRNA. A second, presumably more recent, domain interacts with the anticodon-containing section of tRNA. The small size of the M. jannaschii enzyme is due to the absence of most of the second domain, including a segment thought to bind to the anticodon. Consistent with the absence of an anticodon-binding motif, a mutation of the central base of the anticodon had a relatively small effect on the aminoacylation efficiency of the M. jannaschii enzyme. In contrast, others showed earlier that the same mutation severely reduced charging by a normal-sized bacterial enzyme that has the aforementioned anticodon-binding motif. However, the M. jannaschii enzyme has a peptide insertion into its catalytic domain. This insertion is shared with all other tyrosyl-tRNA synthetases and is needed for a critical minihelix interaction. We show that the M. jannaschii enzyme is active on minihelix substrates over a wide temperature range and has preserved the same peptide-dependent minihelix specificity seen in other tyrosine enzymes. These findings are consistent with the concept that anticodon interactions of tRNA synthetases were later adaptations to the emerging synthetase-tRNA complex that was originally framed around the minihelix.

          Related collections

          Author and article information

          Comments

          Comment on this article