42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Associations between Dopamine D4 Receptor Gene Variation with Both Infidelity and Sexual Promiscuity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection), little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR) polymorphism in exon III of the human dopamine D4 receptor gene (DRD4) has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity.

          Methodology/Principal Findings

          We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a “one-night stand”) and report a more than 50% increase in instances of sexual infidelity.

          Conclusions/Significance

          DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroendocrine perspectives on social attachment and love.

          The purpose of this paper is to review existing behavioral and neuroendocrine perspectives on social attachment and love. Both love and social attachments function to facilitate reproduction, provide a sense of safety, and reduce anxiety or stress. Because social attachment is an essential component of love, understanding attachment formation is an important step toward identifying the neurobiological substrates of love. Studies of pair bonding in monogamous rodents, such as prairie voles, and maternal attachment in precocial ungulates offer the most accessible animal models for the study of mechanisms underlying selective social attachments and the propensity to develop social bonds. Parental behavior and sexual behavior, even in the absence of selective social behaviors, are associated with the concept of love; the analysis of reproductive behaviors, which is far more extensive than our understanding of social attachment, also suggests neuroendocrine substrates for love. A review of these literatures reveals a recurrent association between high levels of activity in the hypothalamic pituitary adrenal (HPA) axis and the subsequent expression of social behaviors and attachments. Positive social behaviors, including social bonds, may reduce HPA axis activity, while in some cases negative social interactions can have the opposite effect. Central neuropeptides, and especially oxytocin and vasopressin have been implicated both in social bonding and in the central control of the HPA axis. In prairie voles, which show clear evidence of pair bonds, oxytocin is capable of increasing positive social behaviors and both oxytocin and social interactions reduce activity in the HPA axis. Social interactions and attachment involve endocrine systems capable of decreasing HPA reactivity and modulating the autonomic nervous system, perhaps accounting for health benefits that are attributed to loving relationships.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans.

            Pair-bonding has been suggested to be a critical factor in the evolutionary development of the social brain. The brain neuropeptide arginine vasopressin (AVP) exerts an important influence on pair-bonding behavior in voles. There is a strong association between a polymorphic repeat sequence in the 5' flanking region of the gene (avpr1a) encoding one of the AVP receptor subtypes (V1aR), and proneness for monogamous behavior in males of this species. It is not yet known whether similar mechanisms are important also for human pair-bonding. Here, we report an association between one of the human AVPR1A repeat polymorphisms (RS3) and traits reflecting pair-bonding behavior in men, including partner bonding, perceived marital problems, and marital status, and show that the RS3 genotype of the males also affects marital quality as perceived by their spouses. These results suggest an association between a single gene and pair-bonding behavior in humans, and indicate that the well characterized influence of AVP on pair-bonding in voles may be of relevance also for humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extra pair paternity in birds: a review of interspecific variation and adaptive function.

              The application of molecular genetic techniques has revolutionized our view of avian mating systems. Contrary to prior expectations, birds are only very rarely sexually monogamous, with 'extra-pair offspring' found in approximately 90% of species. Even among socially monogamous species, over 11% of offspring are, on average, the result of extra-pair paternity (EPP). Based on over 150 molecular genetic studies of EPP in birds, we review two topical areas: (i) ecological explanations for interspecific variation in the rate of EPP; and (ii) evidence bearing on the adaptive function of EPP. We highlight the remaining challenges of understanding the relative roles of genes and ecology in determining variation between taxa in the rate of extra paternity, and testing for differences between extra-pair offspring and those sired within-pair.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                30 November 2010
                : 5
                : 11
                : e14162
                Affiliations
                [1 ]Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, United States of America
                [2 ]Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
                [3 ]Department of Anthropology, Binghamton University, Binghamton, New York, United States of America
                [4 ]Institute for Evolutionary Studies, Binghamton University, Binghamton, New York, United States of America
                [5 ]Department of Psychology, University of Georgia, Athens, Georgia, United States of America
                [6 ]Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island, United States of America
                [7 ]Department of Psychology, Binghamton University, Binghamton, New York, United States of America
                [8 ]Department of Human Development, Binghamton University, Binghamton, New York, United States of America
                Kyushu University, Japan
                Author notes

                Conceived and designed the experiments: JRG AMM DSW JKKL. Performed the experiments: JRG ELA. Analyzed the data: JRG JM. Contributed reagents/materials/analysis tools: JKKL. Wrote the paper: JRG JM.

                Article
                10-PONE-RA-16444R1
                10.1371/journal.pone.0014162
                2994774
                21152404
                57b87a61-f36b-4ab8-a8dd-29b80d60a103
                Garcia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 October 2009
                : 4 November 2010
                Page count
                Pages: 6
                Categories
                Research Article
                Evolutionary Biology/Sexual Behavior
                Neuroscience/Behavioral Neuroscience
                Evolutionary Biology/Human Evolution

                Uncategorized
                Uncategorized

                Comments

                Comment on this article