66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein–protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the ‘non-regulatory’ A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form.

          A discontinuous electrophoretic system for the isolation of membrane proteins from acrylamide gels has been developed using equipment for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Coomassie dyes were introduced to induce a charge shift on the proteins and aminocaproic acid served to improve solubilization of membrane proteins. Solubilized mitochondria or extracts of heart muscle tissue, lymphoblasts, yeast, and bacteria were applied to the gels. From cells containing mitochondria, all the multiprotein complexes of the oxidative phosphorylation system were separated within one gel. The complexes were resolved into the individual polypeptides by second-dimension Tricine-SDS-PAGE or extracted without SDS for functional studies. The recovery of all respiratory chain complexes was almost quantitative. The percentage recovery of functional activity depended on the respective protein complex studied and was zero for some complexes, but almost quantitative for others. The system is especially useful for small scale purposes, e.g., separation of radioactively labeled membrane proteins, N-terminal protein sequencing, preparation of proteins for immunization, and diagnostic studies of inborn neuromuscular diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis.

            Blue native Electrophoresis is a "charge shift" method developed for isolation of native membrane protein complexes from biological membranes that also separates both acidic and basic water-soluble proteins at a fixed pH of 7.5. In combination with a second dimension sodium dodecylsulfate electrophoresis it provides an analytical method for the determination of molecular mass and oligomeric state of nondissociated complexes, of subunit composition, and of degree of purity and for the detection of subcomplexes. The method was applied to analysis of cytochrome bc/bf complexes. By combination of a novel colorless native polyacrylamide gel electrophoresis (CN-PAGE) with blue native BN-PAGE, a two-dimensional native technique was developed that is suitable for preparation of highly pure membrane protein complexes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference

                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                July 2011
                15 April 2011
                15 April 2011
                : 62
                : 11
                : 3799-3805
                Affiliations
                Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
                [1 ]Present address: Biosciences, University of Exeter, Exeter, EX4 4QD, UK
                Author notes
                [* ]To whom correspondence should be addressed. E-mail: T.P.Howard@ 123456exeter.ac.uk
                Article
                10.1093/jxb/err057
                3134340
                21498632
                57bce08f-9a44-434b-b0c3-7e236351245e
                © 2011 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 02 December 2010
                : 07 February 2011
                : 08 February 2011
                Categories
                Research Papers

                Plant science & Botany
                phosphoribulokinase (prk),blue native page,protein–protein interactions,glyceraldehyde-3-phosphate dehydrogenase (gapdh),calvin cycle,cp12

                Comments

                Comment on this article