10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reciprocal regulation of inhibitory synaptic transmission by nicotinic and muscarinic receptors in rat nucleus accumbens shell.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medium spiny neurones (MSNs) in the nucleus accumbens (NAc) are the principal neurones whose activities are regulated by GABAergic inputs from MSNs and fast-spiking interneurones (FSNs). Cholinergic interneurones play important roles in the regulation of activity in MSNs; however, how acetylcholine modulates inhibitory synaptic transmission from MSNs/FSNs to MSNs remains unknown. We performed paired whole-cell patch-clamp recordings from MSNs and FSNs in rat NAc shell slice preparations and examined cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs). Carbachol (1 μM) suppressed uIPSC amplitude by 58.3 ± 8.0% in MSN→MSN connections, accompanied by increases in paired-pulse ratio and failure rate, suggesting that acetylcholine reduces the probability of GABA release from the synaptic terminals of MSNs. Carbachol-induced uIPSC suppression was antagonised by 100 μM atropine, and was mimicked by pilocarpine (1 μM) and acetylcholine (1 μM) but not nicotine (1 μM). Application of AM251 slightly reduced carbachol-induced uIPSC suppression (30.8 ± 8.9%), suggesting an involvement of endocannabinoid signalling in muscarinic suppression of uIPSCs. In contrast, FSN→MSN connections showed that pilocarpine had little effect on the uIPSC amplitude, whereas both nicotine and acetylcholine facilitated uIPSC amplitude, with decreases in failure rate and paired-pulse ratio, suggesting that nicotine-induced uIPSC facilitation is mediated by presynaptic mechanisms. Miniature IPSC recordings support these hypotheses of presynaptic cholinergic mechanisms. These results suggest a differential role for muscarinic and nicotinic receptors in GABA release, which depends on presynaptic neuronal subtypes in the NAc shell.

          Related collections

          Author and article information

          Journal
          J. Physiol. (Lond.)
          The Journal of physiology
          Wiley
          1469-7793
          0022-3751
          Nov 15 2013
          : 591
          : 22
          Affiliations
          [1 ] M. Kobayashi: Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan. kobayashi.masayuki@nihon-u.ac.jp.
          Article
          jphysiol.2013.258558
          10.1113/jphysiol.2013.258558
          3853507
          24018951
          57c858d0-47de-460a-9f99-8e6bc0b73c46
          History

          Comments

          Comment on this article