532
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease.

                Bookmark

                Author and article information

                Contributors
                Journal
                Plant Methods
                Plant Methods
                Plant Methods
                BioMed Central
                1746-4811
                2013
                11 October 2013
                : 9
                : 39
                Affiliations
                [1 ]The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
                Article
                1746-4811-9-39
                10.1186/1746-4811-9-39
                3852272
                24112467
                57d993bc-2354-4f04-a4f7-50d2277fac65
                Copyright © 2013 Belhaj et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 September 2013
                : 7 October 2013
                Categories
                Review

                Plant science & Botany
                crispr,cas9,plant,genome editing,genome engineering,targeted mutagenesis
                Plant science & Botany
                crispr, cas9, plant, genome editing, genome engineering, targeted mutagenesis

                Comments

                Comment on this article