2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Learning Super-Diffusion in Multiplex Networks

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Complex network theory has shown success in understanding the emergent and collective behavior of complex systems [1]. Many real-world complex systems were recently discovered to be more accurately modeled as multiplex networks [2-6]---in which each interaction type is mapped to its own network layer; e.g.~multi-layer transportation networks, coupled social networks, metabolic and regulatory networks, etc. A salient physical phenomena emerging from multiplexity is super-diffusion: exhibited by an accelerated diffusion admitted by the multi-layer structure as compared to any single layer. Theoretically super-diffusion was only known to be predicted using the spectral gap of the full Laplacian of a multiplex network and its interacting layers. Here we turn to machine learning which has developed techniques to recognize, classify, and characterize complex sets of data. We show that modern machine learning architectures, such as fully connected and convolutional neural networks, can classify and predict the presence of super-diffusion in multiplex networks with 94.12\% accuracy. Such predictions can be done {\it in situ}, without the need to determine spectral properties of a network.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The structure and function of complex networks

          M. Newman (2003)
          Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

            Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The structure and dynamics of multilayer networks

              , , (2014)
              In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.
                Bookmark

                Author and article information

                Journal
                09 November 2018
                Article
                1811.04104
                57dd854f-2283-489d-9af5-581e43242668

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                8 pages, 3 figures, RevTeX
                physics.soc-ph cs.LG cs.SI

                Social & Information networks,General physics,Artificial intelligence
                Social & Information networks, General physics, Artificial intelligence

                Comments

                Comment on this article