14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Moving south: effects of water temperatures on the larval development of invasive cane toads ( Rhinella marina) in cool‐temperate Australia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The distributional limits of many ectothermic species are set by thermal tolerances of early‐developmental stages in the life history; embryos and larvae often are less able to buffer environmental variation than are conspecific adults. In pond‐breeding amphibians, for example, cold water may constrain viability of eggs and larvae, even if adults can find suitable thermal conditions in terrestrial niches. Invasive species provide robust model systems for exploring these questions, because we can quantify thermal challenges at the expanding range edge (from field surveys) and larval responses to thermal conditions (in the laboratory). Our studies on invasive cane toads ( Rhinella marina) at the southern (cool‐climate) edge of their expanding range in Australia show that available ponds often average around 20°C during the breeding period, 10°C lower than in many areas of the toads’ native range, or in the Australian tropics. Our laboratory experiments showed that cane toad eggs and larvae cannot develop successfully at 16°C, but hatching success and larval survival rates were higher at 20°C than in warmer conditions. Lower temperatures slowed growth rates, increasing the duration of tadpole life, but also increased metamorph body mass. Water temperature also influenced metamorph body shape (high temperatures reduced relative limb length, head width, and body mass) and locomotor performance (increased speed from intermediate temperatures, longer hops from high temperatures). In combination with previous studies, our data suggest that lower water temperatures may enhance rather than reduce recruitment of cane toads, at least in areas where pond temperatures reach or exceed 20°C. That condition is fulfilled over a wide area of southern Australia, suggesting that the continuing expansion of this invasive species is unlikely to be curtailed by the impacts of relatively low water temperatures on the viability of early life‐history stages.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: not found
          • Article: not found

          Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Global Decline of Reptiles, Déjà Vu Amphibians

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic and genetic differentiation between native and introduced plant populations.

              Plant invasions often involve rapid evolutionary change. Founder effects, hybridization, and adaptation to novel environments cause genetic differentiation between native and introduced populations and may contribute to the success of invaders. An influential idea in this context has been the Evolution of Increased Competitive Ability (EICA) hypothesis. It proposes that after enemy release plants rapidly evolve to be less defended but more competitive, thereby increasing plant vigour in introduced populations. To detect evolutionary change in invaders, comparative studies of native versus introduced populations are needed. Here, we review the current empirical evidence from: (1) comparisons of phenotypic variation in natural populations; (2) comparisons of molecular variation with neutral genetic markers; (3) comparisons of quantitative genetic variation in a common environment; and (4) comparisons of phenotypic plasticity across different environments. Field data suggest that increased vigour and reduced herbivory are common in introduced plant populations. In molecular studies, the genetic diversity of introduced populations was not consistently different from that of native populations. Multiple introductions of invasive plants appear to be the rule rather than the exception. In tests of the EICA hypothesis in a common environment, several found increased growth or decreased resistance in introduced populations. However, few provided a full test of the EICA hypothesis by addressing growth and defence in the same species. Overall, there is reasonable empirical evidence to suggest that genetic differentiation through rapid evolutionary change is important in plant invasions. We discuss conceptual and methodological issues associated with cross-continental comparisons and make recommendations for future research. When testing for EICA, greater emphasis should be put on competitive ability and plant tolerance. Moreover, it is important to address evolutionary change in characteristics other than defence and growth that could play a role in plant invasions.
                Bookmark

                Author and article information

                Contributors
                uwij5911@uni.sydney.edu.au
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                09 September 2016
                October 2016
                : 6
                : 19 ( doiID: 10.1002/ece3.2016.6.issue-19 )
                : 6993-7003
                Affiliations
                [ 1 ] School of Life and Environmental Sciences University of Sydney Sydney NSW 2006 Australia
                Author notes
                [*] [* ] Correspondence

                Uditha Wijethunga, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.

                Email: uwij5911@ 123456uni.sydney.edu.au

                Article
                ECE32405
                10.1002/ece3.2405
                5513214
                57e171ea-e792-457b-bb8d-9873e886bcef
                © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 May 2016
                : 26 July 2016
                : 04 August 2016
                Page count
                Figures: 6, Tables: 0, Pages: 11, Words: 8167
                Funding
                Funded by: Australian Research Council
                Award ID: LP110200473
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                ece32405
                October 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.4 mode:remove_FC converted:05.10.2016

                Evolutionary Biology
                amphibian,bufo marinus,development,invasive species,physiological tolerance,temperature

                Comments

                Comment on this article