65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Phthalates on the Ovary

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phthalates are commonly used as plasticizers in the manufacturing of flexible polyvinyl chloride products. Large production volumes of phthalates and their widespread use in common consumer, medical, building, and personal care products lead to ubiquitous human exposure via oral ingestion, inhalation, and dermal contact. Recently, several phthalates have been classified as reproductive toxicants and endocrine-disrupting chemicals based on their ability to interfere with normal reproductive function and hormone signaling. Therefore, exposure to phthalates represents a public health concern. Currently, the effects of phthalates on male reproduction are better understood than the effects on female reproduction. This is of concern because women are often exposed to higher levels of phthalates than men through their extensive use of personal care and cosmetic products. In the female, a primary regulator of reproductive and endocrine function is the ovary. Specifically, the ovary is responsible for folliculogenesis, the proper maturation of gametes for fertilization, and steroidogenesis, and the synthesis of necessary sex steroid hormones. Any defect in the regulation of these processes can cause complications for reproductive and non-reproductive health. For instance, phthalate-induced defects in folliculogenesis and steroidogenesis can cause infertility, premature ovarian failure, and non-reproductive disorders. Presently, there is a paucity of knowledge on the effects of phthalates on normal ovarian function; however, recent work has established the ovary as a target of phthalate toxicity. This review summarizes what is currently known about the effects of phthalates on the ovary and the mechanisms by which phthalates exert ovarian toxicity, with a particular focus on the effects on folliculogenesis and steroidogenesis. Further, this review outlines future directions, including the necessity of examining the effects of phthalates at doses that mimic human exposure.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: not found

          Phthalates: toxicology and exposure.

          Phthalates are used as plasticizers in PVC plastics. As the phthalate plasticizers are not chemically bound to PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuff, other materials, etc. Consumer products containing phthalates can result in human exposure through direct contact and use, indirectly through leaching into other products, or general environmental contamination. Humans are exposed through ingestion, inhalation, and dermal exposure during their whole lifetime, including intrauterine development. This paper presents an overview on current risk assessments done by expert panels as well as on exposure assessment data, based on ambient and on current human biomonitoring results. Some phthalates are reproductive and developmental toxicants in animals and suspected endocrine disruptors in humans. Exposure assessment via modelling ambient data give hints that the exposure of children to phthalates exceeds that in adults. Current human biomonitoring data prove that the tolerable intake of children is exceeded to a considerable degree, in some instances up to 20-fold. Very high exposures to phthalates can occur via medical treatment, i.e. via use of medical devices containing DEHP or medicaments containing DBP phthalate in their coating. Because of their chemical properties exposure to phthalates does not result in bioaccumulation. However, health concern is raised regarding the developmental and/or reproductive toxicity of phthalates, even in environmental concentrations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000.

            We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different. Non-Hispanic blacks had significantly higher concentrations of MEP than did Mexican Americans and non-Hispanic whites. Compared with adolescents and adults, children had significantly higher levels of MBP, MBzP, and MEHP but had significantly lower concentrations of MEP. Females had significantly higher concentrations of MEP and MBzP than did males, but similar MEHP levels. Of particular interest, females of all ages had significantly higher concentrations of the reproductive toxicant MBP than did males of all ages; however, women of reproductive age (i.e., 20-39 years of age) had concentrations similar to adolescent girls and women 40 years of age. These population data on exposure to phthalates will serve an important role in public health by helping to set research priorities and by establishing a nationally representative baseline of exposure with which population levels can be compared.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing exposure to phthalates - the human biomonitoring approach.

              Some phthalates are developmental and reproductive toxicants in animals. Exposure to phthalates is considered to be potentially harmful to human health as well. Based on a comprehensive literature research, we present an overview of the sources of human phthalate exposure and results of exposure assessments with special focus on human biomonitoring data. Among the general population, there is widespread exposure to a number of phthalates. Foodstuff is the major source of phthalate exposure, particularly for the long-chain phthalates such as di(2-ethylhexyl) phthalate. For short-chain phthalates such as di-n-butyl-phthalate, additional pathways are of relevance. In general, children are exposed to higher phthalate doses than adults. Especially, high exposures can occur through some medications or medical devices. By comparing exposure data with existing limit values, one can also assess the risks associated with exposure to phthalates. Within the general population, some individuals exceed tolerable daily intake values for one or more phthalates. In high exposure groups, (intensive medical care, medications) tolerable daily intake transgressions can be substantial. Recent findings from animal studies suggest that a cumulative risk assessment for phthalates is warranted, and a cumulative exposure assessment to phthalates via human biomonitoring is a major step into this direction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                02 February 2015
                2015
                : 6
                : 8
                Affiliations
                [1] 1Department of Comparative Biosciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA
                Author notes

                Edited by: David H. Volle, INSERM, France

                Reviewed by: Suraj Unniappan, University of Saskatchewan, Canada; Honoo Satake, Suntory Institute for Bioorganic Research, Japan; Kevin Mouzat, Nimes University Hospital, France

                *Correspondence: Jodi A. Flaws, Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA e-mail: jflaws@ 123456illinois.edu

                This article was submitted to Cellular Endocrinology, a section of the journal Frontiers in Endocrinology.

                Article
                10.3389/fendo.2015.00008
                4313599
                25699018
                57e3449b-6ac0-4db1-a1c5-ad23d27845e1
                Copyright © 2015 Hannon and Flaws.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 October 2014
                : 14 January 2015
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 177, Pages: 19, Words: 17134
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                phthalates,phthalic acid,ovary,female reproductive toxicology,ovarian toxicology,folliculogenesis,steroidogenesis

                Comments

                Comment on this article