21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AMPK: Regulation of Metabolic Dynamics in the Context of Autophagy

      review-article
      1 , 2 , 1 , 2 , *
      International Journal of Molecular Sciences
      MDPI
      AMPK, autophagy, metabolism, mTOR, ULK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eukaryotic cells have developed mechanisms that allow them to link growth and proliferation to the availability of energy and biomolecules. AMPK (adenosine monophosphate-activated protein kinase) is one of the most important molecular energy sensors in eukaryotic cells. AMPK activity is able to control a wide variety of metabolic processes connecting cellular metabolism with energy availability. Autophagy is an evolutionarily conserved catabolic pathway whose activity provides energy and basic building blocks for the synthesis of new biomolecules. Given the importance of autophagic degradation for energy production in situations of nutrient scarcity, it seems logical that eukaryotic cells have developed multiple molecular links between AMPK signaling and autophagy regulation. In this review, we will discuss the importance of AMPK activity for diverse aspects of cellular metabolism, and how AMPK modulates autophagic degradation and adapts it to cellular energetic status. We will explain how AMPK-mediated signaling is mechanistically involved in autophagy regulation both through specific phosphorylation of autophagy-relevant proteins or by indirectly impacting in the activity of additional autophagy regulators.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.

          Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade

            Background The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β. Results We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1), but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos. Conclusions These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy.

              Autophagy is a stress response protecting cells from unfavorable conditions, such as nutrient starvation. The class III phosphatidylinositol-3 kinase, Vps34, forms multiple complexes and regulates both intracellular vesicle trafficking and autophagy induction. Here, we show that AMPK plays a key role in regulating different Vps34 complexes. AMPK inhibits the nonautophagy Vps34 complex by phosphorylating T163/S165 in Vps34 and therefore suppresses overall PI(3)P production and protects cells from starvation. In parallel, AMPK activates the proautophagy Vps34 complex by phosphorylating S91/S94 in Beclin1 to induce autophagy. Atg14L, an autophagy-essential gene present only in the proautophagy Vps34 complex, inhibits Vps34 phosphorylation but increases Beclin1 phosphorylation by AMPK. As such, Atg14L dictates the differential regulation (either inhibition or activation) of different Vps34 complexes in response to glucose starvation. Our study reveals an intricate molecular regulation of Vps34 complexes by AMPK in nutrient stress response and autophagy. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 November 2018
                December 2018
                : 19
                : 12
                : 3812
                Affiliations
                [1 ]Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; isaactamargo13@ 123456gmail.com
                [2 ]Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
                Author notes
                [* ]Correspondence: marinoguillermo@ 123456uniovi.es ; Tel.: +34-9-856-524-16; Fax: +34-9-856-524-19
                Article
                ijms-19-03812
                10.3390/ijms19123812
                6321489
                30501132
                57efd5f0-3138-4e2d-b171-4a8650b87bab
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 October 2018
                : 24 November 2018
                Categories
                Review

                Molecular biology
                ampk,autophagy,metabolism,mtor,ulk
                Molecular biology
                ampk, autophagy, metabolism, mtor, ulk

                Comments

                Comment on this article