6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human proximal tubular cells can form calcium phosphate deposits in osteogenic culture: role of cell death and osteoblast-like transdifferentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nephrocalcinosis is a clinicopathological entity characterized by microscopic calcium crystals in the renal parenchyma, within the tubular lumen or in the interstitium. Crystal binding to tubular cells may be the cause underlying nephrocalcinosis and nephrolithiasis. Pathological circumstances, such as acute cortical necrosis, may induce healthy cells to acquire a crystal-binding phenotype. The present study aimed to investigate whether human renal proximal tubular cells (HK-2 cells) can form calcium phosphate deposits under osteogenic conditions, and whether apoptosis and/or osteogenic-like processes are involved in cell calcification. HK-2 cells were cultured in standard or osteogenic medium for 1, 5, and 15 days. Von Kossa staining and ESEM were used to analyze crystal deposition. Apoptosis was investigated, analyzing caspase activation by in-cell Western assay, membrane translocation of phosphotidylserine by annexin V-FITC/propidium iodide staining, and DNA fragmentation by TUNEL assay. qRT/PCR, immunolabeling and cytochemistry were performed to assess osteogenic activation (Runx2, Osteonectin, Osteopontin and ALP), and early genes of apoptosis (BAX, Bcl-2). HK-2 cell mineralization was successfully induced on adding osteogenic medium. Calcium phosphate deposition increased in a time-dependent manner, and calcified cell aggregates exhibited characteristic signs of apoptosis. At 15 days, calcifying HK-2 cells revealed osteogenic markers, such as Runx2, ALP, osteonectin and osteopontin. Monitoring the processes at 1, 5, and 15 days showed apoptosis starting already after 5 days of osteogenic induction, when the first small calcium phosphate crystals began to appear on areas where cell aggregates were in apoptotic conditions. The cell death process proved caspase-dependent. The importance of apoptosis was reinforced by the time-dependent increase in BAX expression, starting from day 1. These findings strongly support the hypothesis that apoptosis triggered HK-2 calcification even before any calcium phosphate crystal deposition or acquisition of an osteogenic phenotype.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.

          Bcl-2 protein is able to repress a number of apoptotic death programs. To investigate the mechanism of Bcl-2's effect, we examined whether Bcl-2 interacted with other proteins. We identified an associated 21 kd protein partner, Bax, that has extensive amino acid homology with Bcl-2, focused within highly conserved domains I and II. Bax is encoded by six exons and demonstrates a complex pattern of alternative RNA splicing that predicts a 21 kd membrane (alpha) and two forms of cytosolic protein (beta and gamma). Bax homodimerizes and forms heterodimers with Bcl-2 in vivo. Overexpressed Bax accelerates apoptotic death induced by cytokine deprivation in an IL-3-dependent cell line. Overexpressed Bax also counters the death repressor activity of Bcl-2. These data suggest a model in which the ratio of Bcl-2 to Bax determines survival or death following an apoptotic stimulus.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphate regulation of vascular smooth muscle cell calcification.

              Vascular calcification is a common finding in atherosclerosis and a serious problem in diabetic and uremic patients. Because of the correlation of hyperphosphatemia and vascular calcification, the ability of extracellular inorganic phosphate levels to regulate human aortic smooth muscle cell (HSMC) culture mineralization in vitro was examined. HSMCs cultured in media containing normal physiological levels of inorganic phosphate (1.4 mmol/L) did not mineralize. In contrast, HSMCs cultured in media containing phosphate levels comparable to those seen in hyperphosphatemic individuals (>1.4 mmol/L) showed dose-dependent increases in mineral deposition. Mechanistic studies revealed that elevated phosphate treatment of HSMCs also enhanced the expression of the osteoblastic differentiation markers osteocalcin and Cbfa-1. The effects of elevated phosphate on HSMCs were mediated by a sodium-dependent phosphate cotransporter (NPC), as indicated by the ability of the specific NPC inhibitor phosphonoformic acid, to dose dependently inhibit phosphate-induced calcium deposition as well as osteocalcin and Cbfa-1 gene expression. With the use of polymerase chain reaction and Northern blot analyses, the NPC in HSMCs was identified as Pit-1 (Glvr-1), a member of the novel type III NPCs. These data suggest that elevated phosphate may directly stimulate HSMCs to undergo phenotypic changes that predispose to calcification and offer a novel explanation of the phenomenon of vascular calcification under hyperphosphatemic conditions. The full text of this article is available at http://www.circresaha.org.
                Bookmark

                Author and article information

                Contributors
                +390498212992 , giovanna.priante@unipd.it
                Journal
                Cell Death Discov
                Cell Death Discov
                Cell Death Discovery
                Nature Publishing Group UK (London )
                2058-7716
                28 January 2019
                28 January 2019
                2019
                : 5
                : 57
                Affiliations
                [1 ]ISNI 0000 0004 1757 3470, GRID grid.5608.b, Laboratory of Kidney Histomorphology and Molecular Biology, Clinical Nephrology, Department of Medicine-DIMED, , University of Padova, ; Padova, Italy
                [2 ]ISNI 0000 0004 1757 3470, GRID grid.5608.b, Center for ESEM and SEM analyses (CEASC), University of Padova, ; Padova, Italy
                Author information
                http://orcid.org/0000-0002-1870-4466
                http://orcid.org/0000-0003-1534-4458
                Article
                138
                10.1038/s41420-019-0138-x
                6349935
                30701089
                58095e40-7f8b-45b2-b2d3-a3e18ec9cbd0
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 October 2018
                : 18 December 2018
                : 21 December 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003500, Università degli Studi di Padova (University of Padova);
                Award ID: CPDA085494
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Comments

                Comment on this article