24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification : CONTROLS ON PHANEROZOIC MARINE DIVERSIFICATION

      Palaeontology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions

          A three-phase kinetic model with time-specific perturbations is used to describe large-scale patterns in the diversification of Phanerozoic marine families. The basic model assumes that the Cambrian, Paleozoic, and Modern evolutionary faunas each diversified logistically as a consequence of early exponential growth and of later slowing of growth as the ecosystems became filled; it also assumes interaction among the evolutionary faunas such that expansion of the combined diversities of all three faunas above any single fauna's equilibrium caused that fauna's diversity to begin to decline. This basic model adequately describes the diversification of the evolutionary faunas through the Paleozoic Era as well as the asymmetrical rise and fall of background extinction rates through the entire Phanerozoic. Declines in diversity and changes in faunal dominance associated with mass extinctions can be accommodated in the model with short-term accelerations in extinction rates or declines in equilibria. Such accelerations, or perturbations, cause diversity to decline exponentially and then to rebound sigmoidally following release. The amount of decline is dependent on the magnitude and duration of the perturbation, the timing of the perturbation with respect to the diversification of the system, and the system's initial per-taxon rates of diversification and turnover. When applied to the three-phase model, such perturbations describe the changes in diversity and faunal dominance during and after major mass extinctions, the long-term rise in total diversity following the Late Permian and Norian mass extinctions, and the peculiar diversification and then decline of the remnants of the Paleozoic fauna during the Mesozoic and Cenozoic Eras. The good fit of this model to data on Phanerozoic familial diversity suggests that many of the large-scale patterns of diversification seen in the marine fossil record of animal families are simple consequences of nonlinear interrelationships among a small number of parameters that are intrinsic to the evolutionary faunas and are largely (but not completely) invariant through time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Species diversity in the Phanerozoic: an interpretation

            David Raup (1976)
            Species diversity among fossil invertebrates of the Phanerozoic is highly correlated with volume and area of sedimentary rocks. The correlations are statistically significant at the 1% level. The relationship holds even in regions (such as Canada) where the area and volume of rock do not increase through time. These results are interpreted as indicating that the apparent number of species is strongly dependent on sampling and that many of the changes in diversity seen in the Phanerozoic are artifactual. Consequently, there is no compelling evidence for a general increase in the number of invertebrate species from Paleozoic to Recent. This conclusion applies primarily to marine organisms. Diversity may have been in dynamic equilibrium throughout much of this time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders

              A simple equilibrial model for the growth and maintenance of Phanerozoic global marine taxonomic diversity can be constructed from considerations of the behavior of origination and extinction rates with respect to diversity. An initial postulate that total rate of diversification is proportional to number of taxa extant leads to an exponential model for early phases of diversification. This model appears to describe adequately the “explosive” diversification of known metazoan orders across the Precambrian-Cambrian Boundary, suggesting that no special event, other than the initial appearance of Metazoa, is necessary to explain this phenomenon. As numbers of taxa increase, the rate of diversification should become “diversity dependent.” Ecological factors should cause the per taxon rate of origination to decline and the per taxon rate of extinction to increase. If these relationships are modeled as simple linear functions, a logistic description of the behavior of taxonomic diversity through time results. This model appears remarkably consistent with the known pattern of Phanerozoic marine ordinal diversity as a whole. Analysis of observed rates of ordinal origination also indicates these are to a large extent diversity dependent; however, diversity dependence is not immediately evident in rates of ordinal extinction. Possible explanations for this pattern are derived from considerations of the size of higher taxa and from simulations of their diversification. These suggest that both the standing diversity and the pattern of origination of orders may adequately reflect the behavior of species diversity through time; however, correspondence between rates of ordinal and species extinction may deteriorate with progressive loss of information resulting from incomplete sampling of the fossil record.
                Bookmark

                Author and article information

                Journal
                Palaeontology
                Wiley-Blackwell
                00310239
                November 2010
                November 2010
                : 53
                : 6
                : 1211-1235
                Article
                10.1111/j.1475-4983.2010.01011.x
                580c141c-4474-4518-b753-13b5caeb3177
                © 2010

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article