8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The venus flytrap of periplasmic binding proteins: An ancient protein module present in multiple drug receptors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid.

            Maintenance of a stable internal environment within complex organisms requires specialized cells that sense changes in the extracellular concentration of specific ions (such as Ca2+). Although the molecular nature of such ion sensors is unknown, parathyroid cells possess a cell surface Ca(2+)-sensing mechanism that also recognizes trivalent and polyvalent cations (such as neomycin) and couples by changes in phosphoinositide turnover and cytosolic Ca2+ to regulation of parathyroid hormone secretion. The latter restores normocalcaemia by acting on kidney and bone. We now report the cloning of complementary DNA encoding an extracellular Ca(2+)-sensing receptor from bovine parathyroid with pharmacological and functional properties nearly identical to those of the native receptor. The novel approximately 120K receptor shares limited similarity with the metabotropic glutamate receptors and features a large extracellular domain, containing clusters of acidic amino-acid residues possibly involved in calcium binding, coupled to a seven-membrane-spanning domain like those in the G-protein-coupled receptor superfamily.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A method to identify protein sequences that fold into a known three-dimensional structure

              The inverse protein folding problem, the problem of finding which amino acid sequences fold into a known three-dimensional (3D) structure, can be effectively attacked by finding sequences that are most compatible with the environments of the residues in the 3D structure. The environments are described by: (i) the area of the residue buried in the protein and inaccessible to solvent; (ii) the fraction of side-chain area that is covered by polar atoms (O and N); and (iii) the local secondary structure. Examples of this 3D profile method are presented for four families of proteins: the globins, cyclic AMP (adenosine 3',5'-monophosphate) receptor-like proteins, the periplasmic binding proteins, and the actins. This method is able to detect the structural similarity of the actins and 70- kilodalton heat shock proteins, even though these protein families share no detectable sequence similarity.
                Bookmark

                Author and article information

                Journal
                AAPS PharmSci
                AAPS PharmSci
                American Association of Pharmaceutical Scientists (AAPS)
                1522-1059
                June 1999
                June 1999
                : 1
                : 2
                : 7-26
                Article
                10.1208/ps010202
                11741199
                582c0b78-1334-475b-902e-2167d487c9b0
                © 1999
                History

                Comments

                Comment on this article