26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Diversification of Hsp40: Distinct J-Protein Functional Requirements for Two Prions Allow for Chaperone-Dependent Prion Selection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [ PSI +] are strongly dependent upon overall variant stability. Notably, multiple strong [ PSI +] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [ RNQ +] prion propagation. In contrast, weak [ PSI +] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [ RNQ +] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [ PSI +]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [ PSI +]/[ RNQ +] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [ PSI +] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have been maintained in eukaryotic chaperone evolution.

          Author Summary

          Multiple neurodegenerative disorders such as Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease are associated with the accumulation of fibrous protein aggregates collectively termed ‘amyloid.’ In the baker's yeast Saccharomyces cerevisiae, multiple proteins form intracellular amyloid aggregates known as yeast prions. Yeast prions minimally require a core set of chaperone proteins for stable propagation in yeast, including the J-protein Sis1, which appears to be required for the propagation of all yeast prions and functioning similarly in each case. Here we present evidence which challenges the notion of a universal function for Sis1 in prion propagation and asserts instead that Sis1's function in the maintenance of at least two prions, [ RNQ +] and [ PSI +], is distinct and mutually exclusive for some prion variants. We also find that the human homolog of Sis1, called Hdj1, has retained the ability to support some, but not all yeast prions, indicating a partial conservation of function. Because yeast chaperones have the ability to both bind and fragment amyloids in vivo, further investigations into these prion-specific properties of Sis1 and Hdj1 will likely lead to new insights into the biological management of protein misfolding.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds.

          An expression system for Saccharomyces cerevisiae (Sc) has been developed which, depending on the chosen vector, allows the constitutive expression of proteins at different levels over a range of three orders of magnitude and in different genetic backgrounds. The expression system is comprised of cassettes composed of a weak CYC1 promoter, the ADH promoter or the stronger TEF and GPD promoters, flanked by a cloning array and the CYC1 terminator. The multiple cloning array based on pBIISK (Stratagene) provides six to nine unique restriction sites, which facilitates the cloning of genes and allows for the directed cloning of cDNAs by the widely used ZAP system (Stratagene). Expression cassettes were placed into both the centromeric and 2 mu plasmids of the pRS series [Sikorski and Hieter, Genetics 122 (1989) 19-27; Christianson et al., Gene 110 (1992) 119-122] containing HIS3, TRP1, LEU2 or URA3 markers. The 32 expression vectors created by this strategy provide a powerful tool for the convenient cloning and the controlled expression of genes or cDNAs in nearly every genetic background of the currently used Sc strains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins.

            Hsp104 is a stress tolerance factor that promotes the reactivation of heat-damaged proteins in yeast by an unknown mechanism. Herein, we demonstrate that Hsp104 functions in this process directly. Unlike other chaperones, Hsp104 does not prevent the aggregation of denatured proteins. However, in concert with Hsp40 and Hsp70, Hsp104 can reactivate proteins that have been denatured and allowed to aggregate, substrates refractory to the action of other chaperones. Hsp104 cooperates with the chaperones present in reticulocyte lysates but not with DnaK of E. coli. We conclude that Hsp104 has a protein remodeling activity that acts on trapped, aggregated proteins and requires specific interactions with conventional chaperones to promote refolding of the intermediates it produces.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nucleated conformational conversion and the replication of conformational information by a prion determinant.

              Prion proteins can serve as genetic elements by adopting distinct physical and functional states that are self-perpetuating and heritable. The critical region of one prion protein, Sup35, is initially unstructured in solution and then forms self-seeded amyloid fibers. We examined in vitro the mechanism by which this state is attained and replicated. Structurally fluid oligomeric complexes appear to be crucial intermediates in de novo amyloid nucleus formation. Rapid assembly ensues when these complexes conformationally convert upon association with nuclei. This model for replicating protein-based genetic information, nucleated conformational conversion, may be applicable to other protein assembly processes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2014
                24 July 2014
                : 10
                : 7
                : e1004510
                Affiliations
                [1]Department of Chemistry, Lafayette College, Easton, Pennsylvania, United States of America
                The University of Arizona, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JMH PPN MJP ZAS JKH. Performed the experiments: JMH PPN MJP ZAS. Analyzed the data: JMH PPN MJP ZAS JKH. Contributed reagents/materials/analysis tools: JKH. Contributed to the writing of the manuscript: JMH PPN JKH.

                Article
                PGENETICS-D-14-00723
                10.1371/journal.pgen.1004510
                4109904
                25058638
                584a19aa-b28a-4b9e-9f80-cb9776e2809b
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 March 2014
                : 30 May 2014
                Page count
                Pages: 14
                Funding
                This work was supported by the Lafayette College Chemistry Department, the EXCEL research scholarship program ( www.lafayette.edu), by a Single-Investigator Cottrell College Science Award (Award #21010) from the Research Corporation for Science Advancement ( http://www.rescorp.org/), and by by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R15GM110606. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Chaperone Proteins
                Prions
                Cell Biology
                Genetics
                Epigenetics
                Fungal Genetics
                Genetic Elements
                Molecular Genetics
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article