34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Obesity and loss of disease-free years owing to major non-communicable diseases: a multicohort study

      research-article
      , PhD a , * , , Prof, DSc c , , MSc a , d , , Prof, PhD e , f , h , , Prof, PhD i , j , , PhD h , k , , Prof, MD l , m , , PhD n , o , , PhD b , , Prof, PhD p , , Prof, MD a , , PhD a , e , , PhD h , , MD a , , PhD q , , MD h , , PhD h , r , , MD e , , MSc a , , Prof, PhD a , , Prof, PhD q , s , , MSc c , , PhD d , t , , Prof, MD d , u , , Prof, MD h , , Prof, MD d , , Prof, MD g , , Prof, PhD h , , MD l , m ,   , Prof, PhD v ,   , PhD c , w , , PhD x , , PhD c , y , , Prof, FMedSci a , c
      The Lancet. Public Health
      Elsevier, Ltd

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Obesity increases the risk of several chronic diseases, but the extent to which the obesity-related loss of disease-free years varies by lifestyle category and across socioeconomic groups is unclear. We estimated the number of years free from major non-communicable diseases in adults who are overweight and obese, compared with those who are normal weight.

          Methods

          We pooled individual-level data on body-mass index (BMI) and non-communicable diseases from men and women with no initial evidence of these diseases in European cohort studies from the Individual-Participant-Data Meta-Analysis in Working Populations consortium. BMI was assessed at baseline (1991–2008) and non-communicable diseases (incident type 2 diabetes, coronary heart disease, stroke, cancer, asthma, and chronic obstructive pulmonary disease) were ascertained via linkage to records from national health registries, repeated medical examinations, or self-report. Disease-free years from age 40 years to 75 years associated with underweight (BMI <18·5 kg/m 2), overweight (≥25 kg/m 2 to <30 kg/m 2), and obesity (class I [mild] ≥30 kg/m 2 to <35 kg/m 2; class II–III [severe] ≥35 kg/m 2) compared with normal weight (≥18·5 kg/m 2 to <25 kg/m 2) were estimated.

          Findings

          Of 137 503 participants from ten studies, we excluded 6973 owing to missing data and 10 349 with prevalent disease at baseline, resulting in an analytic sample of 120 181 participants. Of 47 127 men, 211 (0·4%) were underweight, 21 468 (45·6%) normal weight, 20 738 (44·0%) overweight, 3982 (8·4%) class I obese, and 728 (1·5%) class II–III obese. The corresponding numbers among the 73 054 women were 1493 (2·0%), 44 760 (61·3%), 19 553 (26·8%), 5670 (7·8%), and 1578 (2·2%), respectively. During 1 328 873 person-years at risk (mean follow-up 11·5 years [range 6·3–18·6]), 8159 men and 8100 women developed at least one non-communicable disease. Between 40 years and 75 years, the estimated number of disease-free years was 29·3 (95% CI 28·8–29·8) in normal-weight men and 29·4 (28·7–30·0) in normal-weight women. Compared with normal weight, the loss of disease-free years in men was 1·8 (95% CI −1·3 to 4·9) for underweight, 1·1 (0·7 to 1·5) for overweight, 3·9 (2·9 to 4·9) for class I obese, and 8·5 (7·1 to 9·8) for class II–III obese. The corresponding estimates for women were 0·0 (−1·4 to 1·4) for underweight, 1·1 (0·6 to 1·5) for overweight, 2·7 (1·5 to 3·9) for class I obese, and 7·3 (6·1 to 8·6) for class II–III obese. The loss of disease-free years associated with class II–III obesity varied between 7·1 and 10·0 years in subgroups of participants of different socioeconomic level, physical activity level, and smoking habit.

          Interpretation

          Mild obesity was associated with the loss of one in ten, and severe obesity the loss of one in four potential disease-free years during middle and later adulthood. This increasing loss of disease-free years as obesity becomes more severe occurred in both sexes, among smokers and non-smokers, the physically active and inactive, and across the socioeconomic hierarchy.

          Funding

          NordForsk, UK Medical Research Council, US National Institute on Aging, Academy of Finland, Helsinki Institute of Life Science, and Cancer Research UK.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013.

          In 2010, overweight and obesity were estimated to cause 3·4 million deaths, 3·9% of years of life lost, and 3·8% of disability-adjusted life-years (DALYs) worldwide. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparable, up-to-date information about levels and trends is essential to quantify population health effects and to prompt decision makers to prioritise action. We estimate the global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013. We systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports. We used mixed effects linear regression to correct for bias in self-reports. We obtained data for prevalence of obesity and overweight by age, sex, country, and year (n=19,244) with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Worldwide, the proportion of adults with a body-mass index (BMI) of 25 kg/m(2) or greater increased between 1980 and 2013 from 28·8% (95% UI 28·4-29·3) to 36·9% (36·3-37·4) in men, and from 29·8% (29·3-30·2) to 38·0% (37·5-38·5) in women. Prevalence has increased substantially in children and adolescents in developed countries; 23·8% (22·9-24·7) of boys and 22·6% (21·7-23·6) of girls were overweight or obese in 2013. The prevalence of overweight and obesity has also increased in children and adolescents in developing countries, from 8·1% (7·7-8·6) to 12·9% (12·3-13·5) in 2013 for boys and from 8·4% (8·1-8·8) to 13·4% (13·0-13·9) in girls. In adults, estimated prevalence of obesity exceeded 50% in men in Tonga and in women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has slowed down. Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Not only is obesity increasing, but no national success stories have been reported in the past 33 years. Urgent global action and leadership is needed to help countries to more effectively intervene. Bill & Melinda Gates Foundation. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR).

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016

              Summary Background Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specific mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. Methods We estimated cause-specific deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specific causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specific deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. Findings The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72·3% (95% uncertainty interval [UI] 71·2–73·2) of deaths in 2016 with 19·3% (18·5–20·4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8·43% (8·00–8·67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006–16—age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1·80 million deaths (95% UI 1·59 million to 1·89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176–181) increase in deaths in ages 90–94 years and a 210% (208–212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL significantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2·89%); the median annualised rate of change for all other causes was lower (a decrease of 1·59%) during the same interval. Globally, the five leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a finer level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. Interpretation The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs might reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems. Funding Bill & Melinda Gates Foundation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Public Health
                Lancet Public Health
                The Lancet. Public Health
                Elsevier, Ltd
                2468-2667
                01 September 2018
                October 2018
                01 September 2018
                : 3
                : 10
                : e490-e497
                Affiliations
                [a ]Clinicum, Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
                [b ]Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
                [c ]Department of Epidemiology and Public Health, University College London, London, UK
                [d ]Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
                [e ]Finnish Institute of Occupational Health, Helsinki, Finland
                [f ]Institute of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
                [g ]Department of Medical Sciences, Uppsala University, Uppsala, Sweden
                [h ]Stress Research Institute, University of Stockholm, Stockholm, Sweden
                [i ]Centre for Occupational and Environmental Medicine, Stockholm County Council, Sweden
                [j ]Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
                [k ]School of Health and Welfare, Jönköping University, Jönköping, Sweden
                [l ]Paris Descartes University, Paris, France
                [m ]Inserm UMS 011, Population-Based Epidemiological Cohorts Unit, Villejuif, France
                [n ]Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK
                [o ]Clinical Effectiveness Unit, The Royal College of Surgeons, London, UK
                [p ]Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden
                [q ]National Research Centre for the Working Environment, Copenhagen, Denmark
                [r ]Department of Psychology, Umeå University, Umeå, Sweden
                [s ]Department of Public Health and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
                [t ]Faculty of Social Sciences (Health Sciences), University of Tampere, Tampere, Finland
                [u ]University of Skövde, School of Health and Education, Skövde, Sweden
                [v ]National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
                [w ]Inserm U1018, Centre for Research in Epidemiology and Population Health, Villejuif, France
                [x ]MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
                [y ]Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, UK
                Author notes
                [* ]Correspondence to: Dr Solja T Nyberg, Clinicum Department of Public Health, University of Helsinki, FI-00014 Helsinki, Finland solja.nyberg@ 123456helsinki.fi
                Article
                S2468-2667(18)30139-7
                10.1016/S2468-2667(18)30139-7
                6178874
                30177479
                584d2d39-18a2-42a3-9821-42ae242d47c0
                © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Article

                Comments

                Comment on this article