Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

          Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An on-line transformation of EEG scalp potentials into orthogonal source derivations.

             Bo Hjorth (1975)
            A new type of EEG derivation has been investigated. This derivation, constituting a practical implementation of the Laplace operator, detects source activity as it appears at the surface level of the scalp. It is realized in the 10-20 system of electrode placement basically as an analogue superposition of four bipolar derivations, forming a star-like configuration around each electrode. Visual estimation of the topographical origins of a pattern, is thus replaced by a more efficient on-line process, which derives the source activity at the position of each individual electrode. Practical correlation tests have shown that the separation of adjacent derivations is improved by a factor of between two and four, compared to the corresponding bipolar and common reference derivations. Any feature of local origin will therefore have a correspondingly increased signal-to-noise ratio prior to the stage of visual or automatic interpretation. As a consequence of the partition of the scalp field into 19 source zreas, instead of utilizing an arbitrary number of potential differences, one fixed montage with 19 recorder channels is sufficient to present the total surface activity, within the limits of resolution of the electrode system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              High-performance transistors for bioelectronics through tuning of channel thickness

              Transistors with tunable transconductance allow high-quality recordings of human brain rhythms.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                21 January 2018
                January 2018
                : 18
                : 1
                Affiliations
                [1 ]Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia 46022, Spain; jvlidon@ 123456eln.upv.es
                [2 ]Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia 46022, Spain; gprats@ 123456ci2b.upv.es (G.P.B.); yiye@ 123456eln.upv.es (Y.Y.L.); jgarciac@ 123456ci2b.upv.es (J.G.C.)
                Author notes
                [* ]Correspondence: egarciab@ 123456eln.upv.es ; Tel.: +34-96-387-7608
                Article
                sensors-18-00300
                10.3390/s18010300
                5796388
                29361722
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article