2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MRI driven magnetic microswimmers

      , , ,
      Biomedical Microdevices
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Microscopic artificial swimmers.

          Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Microrobots for minimally invasive medicine.

            Microrobots have the potential to revolutionize many aspects of medicine. These untethered, wirelessly controlled and powered devices will make existing therapeutic and diagnostic procedures less invasive and will enable new procedures never before possible. The aim of this review is threefold: first, to provide a comprehensive survey of the technological state of the art in medical microrobots; second, to explore the potential impact of medical microrobots and inspire future research in this field; and third, to provide a collection of valuable information and engineering tools for the design of medical microrobots.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterizing the swimming properties of artificial bacterial flagella.

              Artificial bacterial flagella (ABFs) consist of helical tails resembling natural flagella fabricated by the self-scrolling of helical nanobelts and soft-magnetic heads composed of Cr/Ni/Au stacked thin films. ABFs are controlled wirelessly using a low-strength rotating magnetic field. Self-propelled devices such as these are of interest for in vitro and in vivo biomedical applications. Swimming tests of ABFs show a linear relationship between the frequency of the applied field and the translational velocity when the frequency is lower than the step-out frequency of the ABF. Moreover, the influences of head size on swimming velocity and the lateral drift of an ABF near a solid boundary are investigated. An experimental method to estimate the propulsion matrix of a helical swimmer under a light microscope is developed. Finally, swarm-like behavior of multiple ABFs controlled as a single entity is demonstrated.
                Bookmark

                Author and article information

                Journal
                Biomedical Microdevices
                Biomed Microdevices
                Springer Nature
                1387-2176
                1572-8781
                February 2012
                October 2011
                : 14
                : 1
                : 165-178
                Article
                10.1007/s10544-011-9594-7
                22037673
                58642a07-32ff-4a4c-8cc4-2619b685aedd
                © 2012
                History

                Comments

                Comment on this article