144
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biology and biotechnology of Trichoderma

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/ Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).

          Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Overview of Mechanisms and Uses of Trichoderma spp.

            ABSTRACT Fungi in the genus Trichoderma have been known since at least the 1920s for their ability to act as biocontrol agents against plant pathogens. Until recently, the principal mechanisms for control have been assumed to be those primarily acting upon the pathogens and included mycoparasitism, antibiosis, and competition for resources and space. Recent advances demonstrate that the effects of Trichoderma on plants, including induced systemic or localized resistance, are also very important. These fungi colonize the root epidermis and outer cortical layers and release bioactive molecules that cause walling off of the Trichoderma thallus. At the same time, the transcriptome and the proteome of plants are substantially altered. As a consequence, in addition to induction of pathways for resistance in plants, increased plant growth and nutrient uptake occur. However, at least in maize, the increased growth response is genotype specific, and some maize inbreds respond negatively to some strains. Trichoderma spp. are beginning to be used in reasonably large quantities in plant agriculture, both for disease control and yield increases. The studies of mycoparasitism also have demonstrated that these fungi produce a rich mixture of antifungal enzymes, including chitinases and beta-1,3 glucanases. These enzymes are synergistic with each other, with other antifungal enzymes, and with other materials. The genes encoding the enzymes appear useful for producing transgenic plants resistant to diseases and the enzymes themselves are beneficial for biological control and other processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biocontrol mechanisms of Trichoderma strains.

              The genus Trichoderma comprises a great number of fungal strains that act as biological control agents, the antagonistic properties of which are based on the activation of multiple mechanisms. Trichoderma strains exert biocontrol against fungal phytopathogens either indirectly, by competing for nutrients and space, modifying the environmental conditions, or promoting plant growth and plant defensive mechanisms and antibiosis, or directly, by mechanisms such as mycoparasitism. These indirect and direct mechanisms may act coordinately and their importance in the biocontrol process depends on the Trichoderma strain, the antagonized fungus, the crop plant, and the environmental conditions, including nutrient availability, pH, temperature, and iron concentration. Activation of each mechanism implies the production of specific compounds and metabolites, such as plant growth factors, hydrolytic enzymes, siderophores, antibiotics, and carbon and nitrogen permeases. These metabolites can be either overproduced or combined with appropriate biocontrol strains in order to obtain new formulations for use in more efficient control of plant diseases and postharvest applications.
                Bookmark

                Author and article information

                Contributors
                andre.schuster@tuwien.ac.at
                +43-1-5880117227 , +43-1-5880117299 , monika.schmoll@tuwien.ac.at
                Journal
                Appl Microbiol Biotechnol
                Applied Microbiology and Biotechnology
                Springer-Verlag (Berlin/Heidelberg )
                0175-7598
                1432-0614
                12 May 2010
                12 May 2010
                July 2010
                : 87
                : 3
                : 787-799
                Affiliations
                Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166-5, 1060 Vienna, Austria
                Article
                2632
                10.1007/s00253-010-2632-1
                2886115
                20461510
                586ef614-6831-4fb3-8382-8f27f9a57676
                © The Author(s) 2010
                History
                : 22 February 2010
                : 16 April 2010
                : 17 April 2010
                Categories
                Mini-Review
                Custom metadata
                © Springer-Verlag 2010

                Biotechnology
                green mold disease,emerging human pathogen,biodiversity,biocontrol,heterologous protein expression,cellulase,application,trichoderma,biofuels,hypocrea

                Comments

                Comment on this article