20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of the dorsal hippocampus in two versions of the touchscreen automated paired associates learning (PAL) task for mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rationale

          The CANTAB object-location paired-associate learning (PAL) test can detect cognitive deficits in schizophrenia and Alzheimer’s disease. A rodent version of touch screen PAL (dPAL) has been developed, but the underlying neural mechanisms are not fully understood. Although there is evidence that inactivation of the hippocampus following training leads to impairments in rats, this has not been tested in mice. Furthermore, it is not known whether acquisition, as opposed to performance, of the rodent version depends on the hippocampus. This is critical as many mouse models may have hippocampal dysfunction prior to the onset of task training.

          Objectives

          The objectives of this study are to examine the effects of dorsal hippocampal (dHp) dysfunction on both performance and acquisition of mouse dPAL and to determine if hippocampal task sensitivity could be increased using a newly developed context-disambiguated PAL (cdPAL) paradigm.

          Methods

          In experiment 1, C57Bl/6 mice received post-acquisition dHp infusions of the GABA agonist muscimol. In experiment 2, C57Bl/6 mice received excitotoxic dHp lesions prior to dPAL/cdPAL acquisition.

          Results

          Post-acquisition muscimol dose-dependently impaired dPAL and cdPAL performance. Pre-acquisition dHp lesions had only mild effects on both PAL tasks. Behavioural challenges including addition of objects and degradation of the visual stimuli with noise did not reveal any further impairments.

          Conclusions

          dPAL and cdPAL performance is hippocampus-dependent in the mouse, but both tasks can be learned in the absence of a functional dHp.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            When is the hippocampus involved in recognition memory?

            The role of the hippocampus in recognition memory is controversial. Recognition memory judgments may be made using different types of information, including object familiarity, an object's spatial location, or when an object was encountered. Experiment 1 examined the role of the hippocampus in recognition memory tasks that required the animals to use these different types of mnemonic information. Rats with bilateral cytotoxic lesions in the hippocampus or perirhinal or prefrontal cortex were tested on a battery of spontaneous object recognition tasks requiring the animals to make recognition memory judgments using familiarity (novel object preference); object-place information (object-in-place memory), or recency information (temporal order memory). Experiment 2 examined whether, when using different types of recognition memory information, the hippocampus interacts with either the perirhinal or prefrontal cortex. Thus, groups of rats were prepared with a unilateral cytotoxic lesion in the hippocampus combined with a lesion in either the contralateral perirhinal or prefrontal cortex. Rats were then tested in a series of object recognition memory tasks. Experiment 1 revealed that the hippocampus was crucial for object location, object-in-place, and recency recognition memory, but not for the novel object preference task. Experiment 2 revealed that object-in-place and recency recognition memory performance depended on a functional interaction between the hippocampus and either the perirhinal or medial prefrontal cortices. Thus, the hippocampus plays a role in recognition memory when such memory involves remembering that a particular stimulus occurred in a particular place or when the memory contains a temporal or object recency component.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The touchscreen operant platform for testing learning and memory in rats and mice.

              An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive rather than aversive reinforcement), has high translational potential and lends itself to a high degree of standardization and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer's disease, schizophrenia, Huntington's disease, frontotemporal dementia), as well as the characterization of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: visual discrimination, object-location paired-associates learning, visuomotor conditional learning and autoshaping. It is accompanied by two further protocols (also published in this issue) that use the touchscreen platform to assess executive function, working memory and pattern separation.
                Bookmark

                Author and article information

                Contributors
                +44(0)1223 333550 , chk35@cam.ac.uk
                Journal
                Psychopharmacology (Berl)
                Psychopharmacology (Berl.)
                Psychopharmacology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0033-3158
                1432-2072
                13 May 2015
                13 May 2015
                2015
                : 232
                : 21-22
                : 3899-3910
                Affiliations
                Department of Psychology, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
                Article
                3949
                10.1007/s00213-015-3949-3
                4600471
                25963561
                587aed91-7ee2-4ee5-b3d0-0be1169c29ce
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 20 March 2015
                : 19 April 2015
                Categories
                Original Investigation
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2015

                Pharmacology & Pharmaceutical medicine
                mouse,paired-associate learning,hippocampus,touch screen operant chamber

                Comments

                Comment on this article