Blog
About

56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour

      ,

      Nature Reviews Neuroscience

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent years have witnessed the rise of the gut microbiota as a major topic of research interest in biology. Studies are revealing how variations and changes in the composition of the gut microbiota influence normal physiology and contribute to diseases ranging from inflammation to obesity. Accumulating data now indicate that the gut microbiota also communicates with the CNS--possibly through neural, endocrine and immune pathways--and thereby influences brain function and behaviour. Studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic bacteria or antibiotic drugs suggest a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain. Thus, the emerging concept of a microbiota-gut-brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.

          Related collections

          Most cited references 134

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, Function and Diversity of the Healthy Human Microbiome

          Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A human gut microbial gene catalogue established by metagenomic sequencing.

            To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversity of the human intestinal microbial flora.

              The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                October 2012
                September 12 2012
                October 2012
                : 13
                : 10
                : 701-712
                10.1038/nrn3346
                22968153
                © 2012

                http://www.springer.com/tdm

                Comments

                Comment on this article