9
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reincorporación al trabajo en el contexto de la pandemia de COVID-19 en sectores de industria y construcción en Navarra (España) Translated title: Return to work in the context of the COVID-19 pandemic in the industrial and construction sectors in Navarre (Spain)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen Objetivo: Analizar el grado de cumplimiento de las medidas preventivas dictadas por la Autoridad Sanitaria frente a la Covid-19 durante las fases de desescalada en empresas del sector industrial y de construcción en Navarra. Métodos: Se elaboraron cuestionarios a partir de las medidas establecidas para verificar in situ el grado de aplicación. El personal técnico de prevención del Servicio de Salud Laboral (SSL) del Instituto de Salud Pública y Laboral de Navarra y de los servicios de prevención ajenos (SPA) visitaron las empresas para asesorar, comprobar y requerir, en su caso, el cumplimiento de las medidas dictadas. Resultados: El grado de cumplimiento de las medidas es mayor en industria que en construcción. Se han generalizado las prácticas de limpieza, los recursos higiénicos y la disposición de elementos de protección respiratoria. La aplicación de medidas necesarias en los lugares comunes (baños, comedores) es menos frecuente. Hay carencia de cartelería informativa y de constancia escrita de las instrucciones preventivas. Se observan diferencias de varios resultados entre la labor desarrollada por los SPA y por el SSL. Conclusiones: Se han detectado debilidades en la consecución de espacios seguros en el trabajo en los sectores de la construcción e industria durante la fase de desescalada en el contexto de la pandemia de la Covid-19. Debe ser reconsiderado el papel de la salud pública en las empresas y la integración de los servicios de prevención en las políticas públicas frente a los riesgos laborales.

          Translated abstract

          Abstract Objective: To analyse the compliance of the preventive instructions formulated by the Health Authority against COVID-19 for the de-escalation phase among the industrial and construction sectors in Navarre. Methods: On the basis of those preventive instructions, questionnaires were drawn up to verify their implementation on site. The occupational risk prevention technicians of the Occupational Health Service (OHS) of the Institute of Public and Work Health of Navarre and those of the External Prevention Services (EPS), under the executive coordination of the OHS, visited the enterprises to advise, verify and require, if necessary, compliance with the instructions dictated. Results: The compliance of the preventive instructions is higher in the industrial sector than in the construction sector. Cleaning practices, hygienic resources and the provision of respiratory protection equipment are widespread. The application of necessary measures in common places (restrooms, dining rooms) are less frequent. There is a lack of informative posters and written corroboration of the preventive instructions. The difference of several results between the OHS and the EPS technicians is remarkable. Conclusions: Weaknesses have been identified in achieving safe workplaces in the construction and industrial sectors during the de-escalation phase in the context of the Covid-19 pandemic. The role of Public Health in the enterprises and the integration of the prevention services in public policies against occupational risks must be reconsidered.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Occupational risks for COVID-19 infection

          David Koh (2020)
          Coronaviruses are enveloped RNA viruses found in mammals, birds and humans. At present, six coronavirus species are known agents for illnesses in humans. Four viruses—229E, OC43, NL63 and HKU1—are prevalent and can cause respiratory symptoms. The other two—severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)—are zoonotic in origin and can cause fatalities [1]. SARS-CoV originated in Guangdong Province, China and was responsible for the severe acute respiratory syndrome outbreaks in 2002 and 2003. It rapidly spread across the globe and resulted in 8098 reported cases and 774 deaths (case-fatality rate, 9.6%) in 37 countries. MERS-CoV originated in the Middle East and caused severe respiratory disease outbreaks in 2012. Since 2012, there have been 2494 reported MERS-CoV cases resulting in 858 deaths (case-fatality rate, 34%) in 27 countries. There were also several rapid outbreaks reported, mainly in hospitals in Saudi Arabia, Jordan and South Korea [2]. On 31 December 2019, the World Health Organization (WHO) China office was informed of cases of pneumonia of unknown aetiology detected in Wuhan city in Hubei Province, central China [3]. By 9 January 2020, WHO released a statement on the cluster of cases, which stated that ‘Chinese authorities have made a preliminary determination of a novel (or new) coronavirus, identified in a hospitalized person with pneumonia in Wuhan’ [4]. The virus was initially referred to as 2019-nCoV, but has since been re-named as SARS-CoV-2 by the WHO on 12 February 2020. Early indications are that the overall case-fatality rate is around 2%. An analysis of the first 425 cases provided an estimated mean incubation period of 5.2 days (95% confidence interval [CI] 4.1–7.0) and a basic reproductive number (R o) of 2.2 (95% CI 1.4–3.9) [1]. It is possible that people with Coronavirus Disease 2019 (COVID-19) may be infectious even before showing significant symptoms [5]. However, based on currently available data, those who have symptoms are causing the majority of virus spread. The WHO declared this disease as a Public Health Emergency of International Concern (PHEIC) on 30 January 2020 [6]. A significant proportion of cases are related to occupational exposure. As this virus is believed to have originated from wildlife and then crossed the species barrier to infect humans, it is not unexpected that the first documented occupational groups at risk were persons working in seafood and wet animal wholesale markets in Wuhan. At the start of the outbreak, workers and visitors to the market comprised 55% of the 47 cases with onset before 1 January 2020, when the wholesale market was closed. In comparison, only 8.5% of the 378 cases with onset of symptoms after 1 January 2020 had a link with exposure at the market [1]. As cases increased and required health care, health care workers (HCWs) were next recognized as another high-risk group to acquire this infection. In a case series of 138 patients treated in a Wuhan hospital, 40 patients (29% of cases) were HCWs. Among the affected HCWs, 31 (77.5%) worked on general wards, 7 (17.5%) in the emergency department, and 2 (5%) in the intensive care unit (ICU). There was apparently a super-spreader patient encountered in the hospital, who presented with abdominal symptoms and was admitted to the surgical department. This patient infected >10 HCWs in the department [7]. China’s Vice-Minister at the National Health Commission said that 1716 health workers had been infected in the country as of Tuesday 11 February 2020, among whom 6 have died [8]. Outside of China, the first confirmed case of COVID-19 infection in Singapore was announced on 23 January 2020 by the Ministry of Health, Singapore (MOH-Sg). The MOH-Sg issues daily press reports to describe case details of confirmed COVID-19 patients. As of 11 February 2020, a total of 47 cases have been confirmed [9]. Among the first 25 locally transmitted cases, 17 cases (68%) were probably related to occupational exposure (Table 1). They included staff in the tourism, retail and hospitality industry, transport and security workers, and construction workers. Table 1. Probable occupationally acquired COVID-19 among 25 locally transmitted cases in Singapore, 4–11 February 2020 Case description (case no.a) No. of cases Staff working in a retail store selling complementary health products primarily serving Chinese tourists (Cases 19, 20, 34, 40) 4 Domestic worker who worked for Case 19 (Case 21) 1 Tour guide who led tour group from China (Case 24) 1 Jewellery store worker who served Chinese tourists (Case 25) 1 Multinational company staff attending an international business meeting in Singapore (Cases 30, 36, 39) 3 Taxi driver (Case 35) 1 Private hire car driver (Case 37) 1 Resorts World Sentosa employee (Case 43) 1 Security officer who served quarantine order to two persons (Case 44) 1 Casino worker (Case 46) 1 Cluster of two workers at the same construction siteb (Cases 42 and 47) 2 aThe case no. denotes the order of cases according to the time of announcement by the Ministry of Health, Singapore. The first 18 cases were imported cases. bTwo other cases (Cases 52 and 56) were reported from the same worksite 2 days later. An international business meeting for 109 staff was organized by a multinational company from 20–22 January 2020 in Singapore. At this event, healthy company workers interacted with other infected participants, which resulted in the transmission of the virus to three employees based in Singapore. Besides those infected from Singapore, one employee from Malaysia, two participants from South Korea and one staff member from the UK were also infected. They presented as cases after leaving Singapore. Crew on board cruise ships with infected passengers are also at risk. At least 10 cases have been reported among the 1035 crew on the liner Diamond Princess, which is currently docked in Yokohama with around 3600 people quarantined since 3 February 2020. A Hong Kong man boarded the ship on 20 January in Yokohama at the beginning of a 14-day round trip cruise. The passenger sailed from Yokohama to Hong Kong, where he disembarked on 25 January. The ship continued its journey, until news was received that the passenger tested positive on 1 February 2020. The Diamond Princess returned to Yokohama a day early, and has been quarantined since then, with guests isolated in their cabins and screened [10]. The quarantine period will end on 19 February 2020. Another cruise ship, the Dutch liner Westerdam, sailed out of Hong Kong on 1 February 2020. It was turned away by the Philippines, Taiwan, Korea, Japan, Thailand and the US territory of Guam, because of fears arising from the COVID-19 outbreak—even though there was apparently no confirmed case on board [11]. The ship was finally allowed to dock in Sihanoukville, Cambodia after 13 days at sea. Besides fears of contagion from people on board cruise ships, which have been likened to ‘floating petri dishes’, fears are also widespread on land. There are increasing reports of HCWs being shunned and harassed by a fearful public because of their occupation. A Member of Parliament in Singapore highlighted what he termed as ‘disgraceful actions’ against HCWs stemming from fear and panic [12]. Some examples of behaviour described were: Taxi drivers reluctant to pick up staff in medical uniform. A healthcare professional’s private-hire vehicle cancelled because she was going to a hospital. A nurse in a lift asked why she was not taking the stairs and that she was spreading the virus to others by taking the lift. A nurse scolded for making the Mass Rapid Transit train “dirty” and spreading the virus. An ambulance driver turned away by food stall workers. However, not all the reactions from the public towards HCWs have been negative. There are probably an equal number of stories of public support and encouragement. Members of the public have showed their appreciation for HCWs and have volunteered to help the more vulnerable in society [13]. For example, a ride-hailing transport operator started a new service offering a dedicated 24-h service for HCWs travelling from work. Volunteers have also stepped forward to distribute hand sanitizers and masks to the elderly and vulnerable in their community, while sharing important public health messages. Such reactions are reminiscent of behaviour during the 2003 SARS outbreak, where not only the general public, but even close family members were afraid of being infected by HCWs exposed to the disease. A survey of over 10 000 HCWs in Singapore during the SARS outbreak of 2003 reported that many respondents experienced social stigmatization. Almost half (49%) thought that ‘people avoid me because of my job’ and 31% felt that ‘people avoid my family members because of my job’. For example, some parents of schoolchildren forbade their children to play or be close to children of HCWs. A large number (69%) of HCWs also felt that ‘people close to me are worried they might get infected through me’ [14]. On the other hand, there was also massive public support for HCWs, who were hailed as heroes in the fight against the disease. Most of the HCWs (77%) felt appreciated by society. COVID-19 is the first new occupational disease to be described in this decade. Our experiences in coping with the previous SARS-CoV and MERS-CoV outbreaks have better prepared us to face this new challenge. While the explosive increase in cases in China has overwhelmed the health care system initially, we know that public health measures such as early detection, quarantine and isolation of cases can be effective in containing the outbreak. All health personnel should be alert to the risk of COVID-19 in a wide variety of occupations, and not only HCWs. These occupational groups can be protected by good infection control practices. These at-risk groups should also be given adequate social and mental health support [15], which are needed but which are sometimes overlooked.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection

            Introduction With the global spread of COVID-19, there is a compelling public health interest in quantifying who is at increased risk of contracting disease. Occupational characteristics, such as interfacing with the public and being in close quarters with other workers, not only put workers at high risk for disease, but also make them a nexus of disease transmission to the community. This can further be exacerbated through presenteeism, the term used to describe the act of coming to work despite being symptomatic for disease. Quantifying the number of workers who are frequently exposed to infection and disease in the workplace, and understanding which occupational groups they represent, can help to prompt public health risk response and management for COVID-19 in the workplace, and subsequent infectious disease outbreaks. Methods To estimate the number of United States workers frequently exposed to infection and disease in the workplace, national employment data (by Standard Occupational Classification) maintained by the Bureau of Labor Statistics (BLS) was merged with a BLS O*NET survey measure reporting how frequently workers in each occupation are exposed to infection or disease at work. This allowed us to estimate the number of United States workers, across all occupations, exposed to disease or infection at work more than once a month. Results Based on our analyses, approximately 10% (14.4 M) of United States workers are employed in occupations where exposure to disease or infection occurs at least once per week. Approximately 18.4% (26.7 M) of all United States workers are employed in occupations where exposure to disease or infection occurs at least once per month. While the majority of exposed workers are employed in healthcare sectors, other occupational sectors also have high proportions of exposed workers. These include protective service occupations (e.g. police officers, correctional officers, firefighters), office and administrative support occupations (e.g. couriers and messengers, patient service representatives), education occupations (e.g. preschool and daycare teachers), community and social services occupations (community health workers, social workers, counselors), and even construction and extraction occupations (e.g. plumbers, septic tank installers, elevator repair). Conclusions The large number of persons employed in occupations with frequent exposure to infection and disease underscore the importance of all workplaces developing risk response plans for COVID-19. Given the proportion of the United States workforce exposed to disease or infection at work, this analysis also serves as an important reminder that the workplace is a key locus for public health interventions, which could protect both workers and the communities they serve.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 Among Workers in Meat and Poultry Processing Facilities ― 19 States, April 2020

              Congregate work and residential locations are at increased risk for infectious disease transmission including respiratory illness outbreaks. SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is primarily spread person to person through respiratory droplets. Nationwide, the meat and poultry processing industry, an essential component of the U.S. food infrastructure, employs approximately 500,000 persons, many of whom work in proximity to other workers (1). Because of reports of initial cases of COVID-19, in some meat processing facilities, states were asked to provide aggregated data concerning the number of meat and poultry processing facilities affected by COVID-19 and the number of workers with COVID-19 in these facilities, including COVID-19-related deaths. Qualitative data gathered by CDC during on-site and remote assessments were analyzed and summarized. During April 9-27, aggregate data on COVID-19 cases among 115 meat or poultry processing facilities in 19 states were reported to CDC. Among these facilities, COVID-19 was diagnosed in 4,913 (approximately 3%) workers, and 20 COVID-19-related deaths were reported. Facility barriers to effective prevention and control of COVID-19 included difficulty distancing workers at least 6 feet (2 meters) from one another (2) and in implementing COVID-19-specific disinfection guidelines.* Among workers, socioeconomic challenges might contribute to working while feeling ill, particularly if there are management practices such as bonuses that incentivize attendance. Methods to decrease transmission within the facility include worker symptom screening programs, policies to discourage working while experiencing symptoms compatible with COVID-19, and social distancing by workers. Source control measures (e.g., the use of cloth face covers) as well as increased disinfection of high-touch surfaces are also important means of preventing SARS-CoV-2 exposure. Mitigation efforts to reduce transmission in the community should also be considered. Many of these measures might also reduce asymptomatic and presymptomatic transmission (3). Implementation of these public health strategies will help protect workers from COVID-19 in this industry and assist in preserving the critical meat and poultry production infrastructure (4).
                Bookmark

                Author and article information

                Journal
                aprl
                Archivos de Prevención de Riesgos Laborales
                Arch Prev Riesgos Labor
                Societat Catalana de Salut Laboral y Asociación de Medicina del Trabajo de la Comunidad Valenciana (Barcelona, Barcelona, Spain )
                1578-2549
                December 2020
                : 23
                : 4
                : 443-457
                Affiliations
                [1] Pamplona orgnameInstituto de Salud Pública y Laboral de Navarra orgdiv1Servicio de Salud Laboral España
                Article
                S1578-25492020000400443 S1578-2549(20)02300400443
                10.12961/aprl.2020.23.04.04
                58966bb1-a382-4eb8-936b-8992898ae69c

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 23 June 2020
                : 14 October 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 9, Pages: 15
                Product

                SciELO Spain

                Categories
                Originales

                COVID-19,reincorporación laboral,preventive measures,occupational risk,riesgos laborales,return to work,medidas preventivas

                Comments

                Comment on this article