87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonequilibrium dynamics of closed interacting quantum systems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This colloquium gives an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems. We particularly focus on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian. We discuss several aspects of the slow dynamics in driven systems and emphasize the universality of such dynamics in gapless systems with specific focus on dynamics near continuous quantum phase transitions. We also review recent progress on understanding thermalization in closed systems through the eigenstate thermalization hypothesis and discuss relaxation in integrable systems. Finally we overview key experiments probing quantum dynamics in cold atom systems and put them in the context of our current theoretical understanding.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Thermalization and its mechanism for generic isolated quantum systems

          Time dynamics of isolated many-body quantum systems has long been an elusive subject. Very recently, however, meaningful experimental studies of the problem have finally become possible, stimulating theoretical interest as well. Progress in this field is perhaps most urgently needed in the foundations of quantum statistical mechanics. This is so because in generic isolated systems, one expects nonequilibrium dynamics on its own to result in thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible, in a sense analogous to that in which dynamical chaos makes classical thermalization possible. For example, dynamical chaos itself cannot occur in an isolated quantum system, where time evolution is linear and the spectrum is discrete. Underscoring that new rules could apply in this case, some recent studies even suggested that statistical mechanics may give wrong predictions for the outcomes of relaxation in such systems. Here we demonstrate that an isolated generic quantum many-body system does in fact relax to a state well-described by the standard statistical mechanical prescription. Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation and that thermalization happens instead at the level of individual eigenstates, as first proposed by J.M. Deutsch and M. Srednicki. A striking consequence of this eigenstate thermalization scenario is that the knowledge of a single many-body eigenstate suffices to compute thermal averages-any eigenstate in the microcanonical energy window will do, as they all give the same result.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Decoherence, einselection, and the quantum origins of the classical

              (2001)
              Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.
                Bookmark

                Author and article information

                Journal
                29 July 2010
                2011-08-15
                Article
                10.1103/RevModPhys.83.863
                1007.5331
                58987d0d-fd0a-419f-beb0-f766aebb07e1

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Rev.Mod.Phys.83:863,2011
                23 pages, 2 Figures, Close to published
                cond-mat.stat-mech cond-mat.quant-gas hep-th quant-ph

                Comments

                Comment on this article