110
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Numerous features distinguish prokaryotes from eukaryotes, chief among which are the distinctive internal membrane systems of eukaryotic cells. These membrane systems form elaborate compartments and vesicular trafficking pathways, and sequester the chromatin within the nuclear envelope. The nuclear pore complex is the portal that specifically mediates macromolecular trafficking across the nuclear envelope. Although it is generally understood that these internal membrane systems evolved from specialized invaginations of the prokaryotic plasma membrane, it is not clear how the nuclear pore complex could have evolved from organisms with no analogous transport system. Here we use computational and biochemical methods to perform a structural analysis of the seven proteins comprising the yNup84/vNup107–160 subcomplex, a core building block of the nuclear pore complex. Our analysis indicates that all seven proteins contain either a β-propeller fold, an α-solenoid fold, or a distinctive arrangement of both, revealing close similarities between the structures comprising the yNup84/vNup107–160 subcomplex and those comprising the major types of vesicle coating complexes that maintain vesicular trafficking pathways. These similarities suggest a common evolutionary origin for nuclear pore complexes and coated vesicles in an early membrane-curving module that led to the formation of the internal membrane systems in modern eukaryotes.

          Abstract

          Structural similarities between the proteins of a nuclear pore subcomplex and proteins comprising vesicle coating complexes indicate a common origin for nuclear pore complexes and coated vesicles

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          The PSIPRED protein structure prediction server.

          The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method. Freely available to non-commercial users at http://globin.bio.warwick.ac.uk/psipred/
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CATH--a hierarchic classification of protein domain structures.

            Protein evolution gives rise to families of structurally related proteins, within which sequence identities can be extremely low. As a result, structure-based classifications can be effective at identifying unanticipated relationships in known structures and in optimal cases function can also be assigned. The ever increasing number of known protein structures is too large to classify all proteins manually, therefore, automatic methods are needed for fast evaluation of protein structures. We present a semi-automatic procedure for deriving a novel hierarchical classification of protein domain structures (CATH). The four main levels of our classification are protein class (C), architecture (A), topology (T) and homologous superfamily (H). Class is the simplest level, and it essentially describes the secondary structure composition of each domain. In contrast, architecture summarises the shape revealed by the orientations of the secondary structure units, such as barrels and sandwiches. At the topology level, sequential connectivity is considered, such that members of the same architecture might have quite different topologies. When structures belonging to the same T-level have suitably high similarities combined with similar functions, the proteins are assumed to be evolutionarily related and put into the same homologous superfamily. Analysis of the structural families generated by CATH reveals the prominent features of protein structure space. We find that nearly a third of the homologous superfamilies (H-levels) belong to ten major T-levels, which we call superfolds, and furthermore that nearly two-thirds of these H-levels cluster into nine simple architectures. A database of well-characterised protein structure families, such as CATH, will facilitate the assignment of structure-function/evolution relationships to both known and newly determined protein structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties.

              FUGUE, a program for recognizing distant homologues by sequence-structure comparison (http://www-cryst.bioc.cam.ac.uk/fugue/), has three key features. (1) Improved environment-specific substitution tables. Substitutions of an amino acid in a protein structure are constrained by its local structural environment, which can be defined in terms of secondary structure, solvent accessibility, and hydrogen bonding status. The environment-specific substitution tables have been derived from structural alignments in the HOMSTRAD database (http://www-cryst.bioc. cam.ac.uk/homstrad/). (2) Automatic selection of alignment algorithm with detailed structure-dependent gap penalties. FUGUE uses the global-local algorithm to align a sequence-structure pair when they greatly differ in length and uses the global algorithm in other cases. The gap penalty at each position of the structure is determined according to its solvent accessibility, its position relative to the secondary structure elements (SSEs) and the conservation of the SSEs. (3) Combined information from both multiple sequences and multiple structures. FUGUE is designed to align multiple sequences against multiple structures to enrich the conservation/variation information. We demonstrate that the combination of these three key features implemented in FUGUE improves both homology recognition performance and alignment accuracy. Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2004
                2 November 2004
                : 2
                : 12
                : e380
                Affiliations
                [1] 1Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry and California Institute for Quantitative Biomedical Research, University of California San Francisco, CaliforniaUnited States of America
                [2] 2Laboratory of Cellular and Structural Biology, Rockefeller University New York, New YorkUnited States of America
                [3] 3Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University New York, New YorkUnited States of America
                Article
                10.1371/journal.pbio.0020380
                524472
                15523559
                58988269-c74d-4d33-893f-d4362f8b6280
                Copyright: © 2004 Devos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
                History
                : 13 July 2004
                : 7 August 2004
                Categories
                Research Article
                Bioinformatics/Computational Biology
                Cell Biology
                Evolution
                Molecular Biology/Structural Biology
                Eukaryotes
                Eubacteria

                Life sciences
                Life sciences

                Comments

                Comment on this article