15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition and Inactivation of Uropathogenic Escherichia coli Biofilms on Urinary Catheters by Sodium Selenite

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urinary tract infections (UTI) are the most common hospital-acquired infections in humans and are caused primarily by uropathogenic Escherichia coli (UPEC). Indwelling urinary catheters become encrusted with UPEC biofilms that are resistant to common antibiotics, resulting in chronic infections. Therefore, it is important to control UPEC biofilms on catheters to reduce the risk for UTIs. This study investigated the efficacy of selenium for inhibiting and inactivating UPEC biofilms on urinary catheters. Urinary catheters were inoculated with UPEC and treated with 0 and 35 mM selenium at 37 °C for 5 days for the biofilm inhibition assay. In addition, catheters with preformed UPEC biofilms were treated with 0, 45, 60, and 85 mM selenium and incubated at 37 °C. Biofilm-associated UPEC counts on catheters were enumerated on days 0, 1, 3, and 5 of incubation. Additionally, the effect of selenium on exopolysacchride (EPS) production and expression of UPEC biofilm-associated genes was evaluated. Selenium at 35 mM concentration was effective in preventing UPEC biofilm formation on catheters compared to controls ( p < 0.05). Further, this inhibitory effect was associated with a reduction in EPS production and UPEC gene expression. Moreover, at higher concentrations, selenium was effective in inactivating preformed UPEC biofilms on catheters as early as day 3 of incubation. Results suggest that selenium could be potentially used in the control of UPEC biofilms on urinary catheters.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili.

          We have used Escherichia coli as a model system to investigate the initiation of biofilm formation. Here, we demonstrate that E. coli forms biofilms on multiple abiotic surfaces in a nutrient-dependent fashion. In addition, we have isolated insertion mutations that render this organism defective in biofilm formation. One-half of these mutations was found to perturb normal flagellar function. Using defined fli, flh, mot and che alleles, we show that motility, but not chemotaxis, is critical for normal biofilm formation. Microscopic analyses of these mutants suggest that motility is important for both initial interaction with the surface and for movement along the surface. In addition, we present evidence that type I pili (harbouring the mannose-specific adhesin, FimH) are required for initial surface attachment and that mannose inhibits normal attachment. In light of the observations presented here, a working model is discussed that describes the roles of both motility and type I pili in biofilm development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofilms and device-associated infections.

            Microorganisms commonly attach to living and nonliving surfaces, including those of indwelling medical devices, and form biofilms made up of extracellular polymers. In this state, microorganisms are highly resistant to antimicrobial treatment and are tenaciously bound to the surface. To better understand and control biofilms on indwelling medical devices, researchers should develop reliable sampling and measurement techniques, investigate the role of biofilms in antimicrobial drug resistance, and establish the link between biofilm contamination and patient infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies

              Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                07 June 2018
                June 2018
                : 19
                : 6
                : 1703
                Affiliations
                [1 ]Department of Psychology, University of Connecticut, Storrs, CT 06269, USA; amoolya.narayanan@ 123456gmail.com
                [2 ]Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; meera.nair@ 123456gmail.com (M.S.N.); muhammed.muyyarikkandy@ 123456uconn.edu (M.S.M.)
                Author notes
                [* ]Correspondence: mary_anne.amalaradjou@ 123456uconn.edu ; Tel.: +1-860-486-6620; Fax: +1-860-486-4375
                Author information
                https://orcid.org/0000-0003-3405-5440
                https://orcid.org/0000-0001-7411-2206
                Article
                ijms-19-01703
                10.3390/ijms19061703
                6032314
                29880781
                589a6882-439c-4312-90aa-d696401ce799
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 April 2018
                : 05 June 2018
                Categories
                Article

                Molecular biology
                upec,selenium,biofilm,urinary catheters,exopolysaccharide,gene expression
                Molecular biology
                upec, selenium, biofilm, urinary catheters, exopolysaccharide, gene expression

                Comments

                Comment on this article