+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells.

      Cancer research
      American Association for Cancer Research (AACR)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Notch signaling plays a critical role in the pathogenesis and progression of human malignancies but the precise role and mechanism of Notch-1 for tumor invasion remains unclear. In our earlier report, we showed that down-regulation of Notch-1 reduced nuclear factor-kappaB (NF-kappaB) DNA-binding activity and matrix metalloproteinase-9 (MMP-9) expression. Because NF-kappaB, VEGF, and MMPs are critically involved in the processes of tumor cell invasion and metastasis, we investigated the role and mechanism(s) by which Notch-1 down-regulation (using molecular approaches) may lead to the down-regulation of NF-kappaB, vascular endothelial growth factor (VEGF), and MMP-9, thereby inhibiting invasion of pancreatic cancer cells through Matrigel. We found that the down-regulation of Notch-1 by small interfering RNA decreased cell invasion, whereas Notch-1 overexpression by cDNA transfection led to increased tumor cell invasion. Consistent with these results, we found that the down-regulation of Notch-1 reduced NF-kappaB DNA-binding activity and VEGF expression. Down-regulation of Notch-1 also decreased not only MMP-9 mRNA and its protein expression but also inactivated the pro-MMP-9 protein to its active form. Taken together, we conclude that the down-regulation of Notch-1 could be an effective approach for the down-regulation and inactivation of NF-kappaB and its target genes, such as MMP-9 and VEGF expression, resulting in the inhibition of invasion and metastasis.

          Related collections

          Author and article information



          Comment on this article