62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin Suppressed Activation of Dendritic Cells via JAK/STAT/SOCS Signal in Mice with Experimental Colitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic cells (DCs) play a pivotal role as initiators in the pathogenesis of inflammatory bowel disease and are regulated by the JAK/STAT/SOCS signaling pathway. As a potent anti-inflammatory compound, curcumin represents a viable treatment alternative or adjunctive therapy in the management of chronic inflammatory bowel disease (IBD). The mechanism of curcumin treated IBD on DCs is not completely understood. In the present study, we explored the mechanism of curcumin treated experimental colitis by observing activation of DCs via JAK/STAT/SOCS signaling pathway in colitis mice. Experimental colitis was induced by 2, 4, 6-trinitrobenzene sulfonic acid. After 7 days treatment with curcumin, its therapeutic effect was verified by decreased colonic weight, histological scores, and remitting pathological injury. Meanwhile, the levels of major histocompatibility complex class II and DC costimulatory molecules (CD83, CD28, B7-DC, CD40, CD40 L, and TLR2) were inhibited and followed the up-regulated levels of IL-4, IL-10, and IFN-γ, and down-regulated GM-CSF, IL-12p70, IL-15, IL-23, and TGF-β1. A key finding was that the phosphorylation of the three members (JAK2, STAT3, and STAT6) of the JAK/STAT/SOCS signaling pathway was inhibited, and the three downstream proteins (SOCS1, SOCS3, and PIAS3) from this pathway were highly expressed. In conclusion, curcumin suppressed the activation of DCs by modulating the JAK/STAT/SOCS signaling pathway to restore immunologic balance to effectively treat experimental colitis.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Chemically induced mouse models of intestinal inflammation.

          Animal models of intestinal inflammation are indispensable for our understanding of the pathogenesis of Crohn disease and ulcerative colitis, the two major forms of inflammatory bowel disease in humans. Here, we provide protocols for establishing murine 2,4,6-trinitro benzene sulfonic acid (TNBS)-, oxazolone- and both acute and chronic dextran sodium sulfate (DSS) colitis, the most widely used chemically induced models of intestinal inflammation. In the former two models, colitis is induced by intrarectal administration of the covalently reactive reagents TNBS/oxazolone, which are believed to induce a T-cell-mediated response against hapten-modified autologous proteins/luminal antigens. In the DSS model, mice are subjected several days to drinking water supplemented with DSS, which seems to be directly toxic to colonic epithelial cells of the basal crypts. The procedures for the hapten models of colitis and acute DSS colitis can be accomplished in about 2 weeks but the protocol for chronic DSS colitis takes about 2 months.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decisions about dendritic cells: past, present, and future.

            A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells are required to explain how this remarkable system is energized and directed. I frame this article in terms of the major decisions that my colleagues and I have made in dendritic cell science and some of the guiding themes at the time the decisions were made. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. The in vivo distribution and development of a previously unrecognized white cell lineage is better understood, as is the importance of dendritic cell maturation to link innate and adaptive immunity in response to many stimuli. Our current focus is on antigen uptake receptors on dendritic cells. These receptors enable experiments involving selective targeting of antigens in situ and new approaches to vaccine design in preclinical and clinical systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD40 and CD154 in cell-mediated immunity.

              CD40-CD154-mediated contact-dependent signals between B and T cells are required for the generation of thymus dependent (TD) humoral immune responses. CD40-CD154 interactions are however also important in many other cell systems. CD40 is expressed by a large variety of cell types other than B cells, and these include dendritic cells, follicular dendritic cells, monocytes, macrophages, mast cells, fibroblasts, and endothelial cells. CD40- and CD154-knockout mice and antibodies to CD40 and CD154 have helped to elucidate the role of the CD40-CD154 system in immune responses. Recently published studies indicate that CD40-CD154 interactions can influence T cell priming and T cell-mediated effector functions; they can also upregulate costimulatory molecules and activate macrophages, NK cells, and endothelia as well as participate in organ-specific autoimmune disease, graft rejection, and even atherosclerosis. This review focuses on the role of the CD40-CD154 system in the regulation of many newly discovered functions important in inflammation and cell-mediated immunity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                25 November 2016
                2016
                : 7
                : 455
                Affiliations
                [1] 1School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine Nanchang, China
                [2] 2Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
                [3] 3Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine Nanchang, China
                [4] 4School of Chinese Medicine, Hong Kong Baptist University Kowloon Tong, China
                [5] 5Science and Technology College, Jiangxi University of Traditional Chinese Medicine Nanchang, China
                Author notes

                Edited by: David Beattie, Theravance, Inc., USA

                Reviewed by: Fei Shen, Boehringer Ingelheim, USA; Elad Kaufman, Theravance Biopharma, USA

                *Correspondence: Duan-yong Liu, liuduanyong@ 123456163.com

                This article was submitted to Gastrointestinal and Hepatic Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2016.00455
                5122716
                27932984
                58b1f168-40dd-43b1-9499-3ecc28979145
                Copyright © 2016 Zhao, Xu, Huang, Cheng, Huang, Yue, Wang, Zou, Lu and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 August 2016
                : 14 November 2016
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 66, Pages: 11, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                curcumin,dendritic cell,experimental colitis,jak/stat/socs signal,costimulatory molecules

                Comments

                Comment on this article