3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions

      ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Each metabolite, regardless of its molecular simplicity or complexity, has a mission or function in the organism biosynthesizing it. In this review, the biological, allelochemical, and chemical properties of acetophenone, as a metabolite involved in multiple interactions with various (mi-cro)organisms, are discussed. Further, the details of its biogenesis and chemical synthesis are provided, and the possibility of its application in different areas of life sciences, i.e., the status quo of acetophenone and its simple substituted analogs, is examined. In particular, natural and synthetic simple acetophenone derivatives are analyzed as promising agrochemicals and useful scaffolds for drug research and development.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophil extracellular traps in immunity and disease

          Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural products: a continuing source of novel drug leads.

            Nature has been a source of medicinal products for millennia, with many useful drugs developed from plant sources. Following discovery of the penicillins, drug discovery from microbial sources occurred and diving techniques in the 1970s opened the seas. Combinatorial chemistry (late 1980s), shifted the focus of drug discovery efforts from Nature to the laboratory bench. This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases. It is clear Nature will continue to be a major source of new structural leads, and effective drug development depends on multidisciplinary collaborations. The explosion of genetic information led not only to novel screens, but the genetic techniques permitted the implementation of combinatorial biosynthetic technology and genome mining. The knowledge gained has allowed unknown molecules to be identified. These novel bioactive structures can be optimized by using combinatorial chemistry generating new drug candidates for many diseases. The advent of genetic techniques that permitted the isolation / expression of biosynthetic cassettes from microbes may well be the new frontier for natural products lead discovery. It is now apparent that biodiversity may be much greater in those organisms. The numbers of potential species involved in the microbial world are many orders of magnitude greater than those of plants and multi-celled animals. Coupling these numbers to the number of currently unexpressed biosynthetic clusters now identified (>10 per species) the potential of microbial diversity remains essentially untapped. Published by Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Agriculture Development, Pesticide Application and Its Impact on the Environment

              Pesticides are indispensable in agricultural production. They have been used by farmers to control weeds and insects, and their remarkable increases in agricultural products have been reported. The increase in the world’s population in the 20th century could not have been possible without a parallel increase in food production. About one-third of agricultural products are produced depending on the application of pesticides. Without the use of pesticides, there would be a 78% loss of fruit production, a 54% loss of vegetable production, and a 32% loss of cereal production. Therefore, pesticides play a critical role in reducing diseases and increasing crop yields worldwide. Thus, it is essential to discuss the agricultural development process; the historical perspective, types and specific uses of pesticides; and pesticide behavior, its contamination, and adverse effects on the natural environment. The review study indicates that agricultural development has a long history in many places around the world. The history of pesticide use can be divided into three periods of time. Pesticides are classified by different classification terms such as chemical classes, functional groups, modes of action, and toxicity. Pesticides are used to kill pests and control weeds using chemical ingredients; hence, they can also be toxic to other organisms, including birds, fish, beneficial insects, and non-target plants, as well as air, water, soil, and crops. Moreover, pesticide contamination moves away from the target plants, resulting in environmental pollution. Such chemical residues impact human health through environmental and food contamination. In addition, climate change-related factors also impact on pesticide application and result in increased pesticide usage and pesticide pollution. Therefore, this review will provide the scientific information necessary for pesticide application and management in the future.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                January 2023
                January 02 2023
                : 28
                : 1
                : 370
                Article
                10.3390/molecules28010370
                36615564
                58b47044-178a-4dcf-a1fb-d76736caf55e
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article