0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tyrosine kinase inhibitors in sarcoma treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sarcomas are a group of rare mesenchymal malignant tumors that arise from transformed cells of the mesenchymal connective tissue, which are challenging to treat. The majority of sarcomas are soft tissue sarcomas (STSs; 75%) and this heterogeneous group of tumors is further comprised of gastrointestinal stromal tumors (~15%) and bone sarcomas (10%). Although surgery remains the current primary therapeutic approach for localized disease, recurrent, metastatic and refractory sarcomas require cytotoxic chemotherapy, which usually yields poor results. Therefore the efficiency of sarcoma treatment imposes a difficult problem. Furthermore, even though progress has been made towards understanding the underlying molecular signaling pathways of sarcoma, there are limited treatment options. The aim of the present study was therefore to perform a systematic literature review of the available clinical evidence regarding the role of tyrosine kinase inhibitors (TKIs) in patients with recurrent or refractory STSs and bone sarcomas over the last two decades. Tyrosine kinases are principal elements of several intracellular molecular signaling pathways. Deregulation of these proteins has been implicated in driving oncogenesis via the crosstalk of pivotal cellular signaling pathways and cascades, including cell proliferation, migration, angiogenesis and apoptosis. Subsequently, small molecule TKIs that target these proteins provide a novel potential therapeutic approach for several types of tumor by offering significant clinical benefits. Among the eligible articles, there were 45 prospective clinical trials, primarily multicentric, single arm, phase II and non-randomized. Numerous studies have reported promising results regarding the use of TKIs, mainly resulting in disease control in patients with STSs. The lack of randomized clinical trials demonstrates the ambiguous efficiency of various studied treatment options, which therefore currently limits the approved drugs used in clinical practice. Research both in clinical and preclinical settings is needed to shed light on the underlying molecular drivers of sarcomagenesis and will identify novel therapeutic approaches for pretreated patients.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.

          New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial.

            Effective targeted treatment is unavailable for most sarcomas and doxorubicin and ifosfamide-which have been used to treat soft-tissue sarcoma for more than 30 years-still have an important role. Whether doxorubicin alone or the combination of doxorubicin and ifosfamide should be used routinely is still controversial. We assessed whether dose intensification of doxorubicin with ifosfamide improves survival of patients with advanced soft-tissue sarcoma compared with doxorubicin alone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial.

              Pazopanib, a multitargeted tyrosine kinase inhibitor, has single-agent activity in patients with advanced non-adipocytic soft-tissue sarcoma. We investigated the effect of pazopanib on progression-free survival in patients with metastatic non-adipocytic soft-tissue sarcoma after failure of standard chemotherapy. This phase 3 study was done in 72 institutions, across 13 countries. Patients with angiogenesis inhibitor-naive, metastatic soft-tissue sarcoma, progressing despite previous standard chemotherapy, were randomly assigned by an interactive voice randomisation system in a 2:1 ratio in permuted blocks (with block sizes of six) to receive either pazopanib 800 mg once daily or placebo, with no subsequent cross-over. Patients, investigators who gave the treatment, those assessing outcomes, and those who did the analysis were masked to the allocation. The primary endpoint was progression-free survival. Efficacy analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00753688. 372 patients were registered and 369 were randomly assigned to receive pazopanib (n=246) or placebo (n=123). Median progression-free survival was 4·6 months (95% CI 3·7-4·8) for pazopanib compared with 1·6 months (0·9-1·8) for placebo (hazard ratio [HR] 0·31, 95% CI 0·24-0·40; p<0·0001). Overall survival was 12·5 months (10·6-14·8) with pazopanib versus 10·7 months (8·7-12·8) with placebo (HR 0·86, 0·67-1·11; p=0·25). The most common adverse events were fatigue (60 in the placebo group [49%] vs 155 in the pazopanib group [65%]), diarrhoea (20 [16%] vs 138 [58%]), nausea (34 [28%] vs 129 [54%]), weight loss (25 [20%] vs 115 [48%]), and hypertension (8 [7%] vs 99 [41%]). The median relative dose intensity was 100% for placebo and 96% for pazopanib. Pazopanib is a new treatment option for patients with metastatic non-adipocytic soft-tissue sarcoma after previous chemotherapy. GlaxoSmithKline. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                June 2022
                21 April 2022
                21 April 2022
                : 23
                : 6
                : 183
                Affiliations
                [1 ]Second Propaedeutic Department of Medicine, Attikon University Hospital, 12462 Athens, Greece
                [2 ]Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, 14564 Athens, Greece
                [3 ]Sarcoma Oncology, Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
                Author notes
                Correspondence to: Dr Anastasios Kyriazoglou, Second Propaedeutic Department of Medicine, Attikon University Hospital, 1 Rimini Street, 12462 Athens, Greece, E-mail:
                [*]

                Contributed equally

                Article
                OL-23-06-13303
                10.3892/ol.2022.13303
                9073578
                35527786
                58b779b0-1a5b-40fc-a93a-4d51970e0c31
                Copyright: © Kyriazoglou et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 15 December 2021
                : 29 March 2022
                Funding
                Funded by: HESMO
                Award ID: 8036/25-09-2020
                This study was funded by HESMO (Hellenic Society of Medical Oncology; grant no. 8036/25-09-2020).
                Categories
                Review

                Oncology & Radiotherapy
                soft tissue sarcoma,bone sarcoma,tyrosine kinase inhibitor
                Oncology & Radiotherapy
                soft tissue sarcoma, bone sarcoma, tyrosine kinase inhibitor

                Comments

                Comment on this article