43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hexanucleotide repeat expansion GGGGCC (G 4 C 2 ) n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme Adenosine Deaminase Acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for Adenosine (A) to Inosine (I) editing of double stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G 4 C 2 ) 149 , and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention.

          A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2.

            RNA editing by site-selective deamination of adenosine to inosine alters codons and splicing in nuclear transcripts, and therefore protein function. ADAR2 (refs 7, 8) is a candidate mammalian editing enzyme that is widely expressed in brain and other tissues, but its RNA substrates are unknown. Here we have studied ADAR2-mediated RNA editing by generating mice that are homozygous for a targeted functional null allele. Editing in ADAR2-/- mice was substantially reduced at most of 25 positions in diverse transcripts; the mutant mice became prone to seizures and died young. The impaired phenotype appeared to result entirely from a single underedited position, as it reverted to normal when both alleles for the underedited transcript were substituted with alleles encoding the edited version exonically. The critical position specifies an ion channel determinant, the Q/R site, in AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptor GluR-B pre-messenger RNA. We conclude that this transcript is the physiologically most important substrate of ADAR2.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases.

              The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.
                Bookmark

                Author and article information

                Journal
                Acta Neuropathologica
                Acta Neuropathol
                Springer Nature
                0001-6322
                1432-0533
                April 3 2019
                Article
                10.1007/s00401-019-01999-w
                6750285
                30945056
                58be9991-37ee-43e7-ba95-f1b154a3bbc2
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article