7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Commentary: GLYX-13 Ameliorates Schizophrenia-Like Phenotype Induced by MK-801 in Mice: Role of Hippocampal NR2B and DISC1

      article-commentary
      ,   *
      Frontiers in Molecular Neuroscience
      Frontiers Media S.A.
      GluN2B, DISC1, dopamine D2 receptor, schizophrenia, NMDAR agonist

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is with great interest we have read the article “GLYX-13 Ameliorates Schizophrenia-Like Phenotype Induced by MK-801 in Mice: Role of Hippocampal NR2B and DISC1” (Zhou et al., 2018). Interestingly, this study showed that GLYX-13 prevents hippocampal N-methyl-D-aspartate receptor subtype 2B—Disrupted in schizophrenia 1 (GluN2B-DISC1) signaling and behavioral changes induced by schizophrenia-mimetic drug MK801 in mice. To confirm GluN2B directly regulating DISC1, these researchers showed that the effects of GLYX-13 were vanished after GluN2B knockdown in mice. GLYX-13 is an amidated tetrapeptide. Studies have shown that GLYX-13 can specifically bind to the glycine site of N-methyl-D-aspartate receptors (NMDARs) and act as a partial agonist of GluN2B-containing NMDARs (Moskal et al., 2005; Stanton et al., 2009). GLYX-13 improves learning and increases the magnitude of LTP in rat hippocampus (Zhang et al., 2008). Both GLYX-13 and ketamine have antidepressant-like effects, while GLYX-13 has fewer psychotomimetic side effects than ketamine in both humans and rats (Burgdorf et al., 2013; Moskal et al., 2014). According to previous study, both GLYX-13 and ketamine are able to increase cell surface protein expression of GluN2B in rats (Burgdorf et al., 2013). This might help to explain similar antidepressant effects of these two compounds. However, the mechanism how GLYX-13 causes less side effects is still unclear. Interestingly, memantine, another weak NMDAR modulator, also shows fewer side effects than other NMDAR antagonists in treating Alzheimer's disease (Parsons et al., 1999). Therefore, it is important for the treatment of psychiatric disorders to understand how GLYX-13 and other NMDAR modulators affect the neuronal system in psychiatric disorders without causing serious side effects. Although GluN2B-containing NMDAR hypofunction and DISC1 alteration are implemented in the neuropathology of schizophrenia (Callicott et al., 2005; Geddes et al., 2014), the mechanism of their possible interactions are not clear. In fact, dysfunction of GluN2B is involved in a number of severe mental disorders (Moghaddam and Javitt, 2012; Paoletti et al., 2013). GluN2B is found to be over-activated in Alzheimer's disease (Paoletti et al., 2013). Furthermore, GluN2B antagonists reduce amyloid β-induced synaptic deficits and impairs long term potentiation. (Rönicke et al., 2011) Conversely, GluN2B hypo-activity is found in hippocampus accompanied by cognitive impairment and memory loss in rats (Clayton et al., 2002). In clinical studies, GluN2B antagonists exacerbate the schizophrenia-like symptoms in both healthy people and patients (Moghaddam and Javitt, 2012), while antipsychotic drug olanzapine can activate GluN2B via phosphorylation of the GluN2B at Y1472 (Zhang et al., 2016). Moreover, GluN2B has a number of phosphorylation sites, which could be responsible for GluN2B function. For example, phosphorylation of Y1472 attenuated the internalization of GluN2B (Roche et al., 2001). In this paper (Zhou et al., 2018), GluN2B changes were found, which could be due to alterations of the internalization. An early study has shown that Casein Kinase 2 (CK2) might be responsible for this internalization (Sanz-Clemente et al., 2010), therefore a detection of CK2 might help to clarify the internalization process of GluN2B. In addition, due to the slow deactivation kinetics of GluN2B containing NMDARs (Cull-Candy and Leszkiewicz, 2004), activated synapses with GluN2B type NMDARs exhibit a strong Ca2+ influx. The Ca2+ influx in turn regulates downstream Ca2+-dependent proteins such as CaMKII and leads to activity-induced gene expression, synaptic plasticity and neurite growth (Sanz-Clemente et al., 2013; Barcomb et al., 2016). Thereafter, GluN2B-containing NMDARs regulate neurite growth and synaptic plasticity (Brigman et al., 2010). It is noteworthy that GluN2B interacts with dopamine receptor D2 receptor (D2R) (Fan et al., 2014). D2R can physically interact with GluN2B in the post synaptic density (PSD) of the striatum in rats (Liu et al., 2006). Meanwhile, the binding of GluN2B with D2R can significantly affect the phosphorylation of S1303 of GluN2B, and thus affect CaMKII activity and synaptic plasticity. The author also found the binding sequence of D2R is TKRSSRAFRA (amino acid position 225–234) located in the third intracellular loop of D2R. Co-immunoprecipitation study also confirmed that GluN2B and D2R are tightly associated. Moreover, the activation of D2R by cocaine can significantly increase this complex formation and thus reduces NMDAR mediated currents due to dephosphorylated S1303 of the GluN2B subunit (Liu et al., 2006). Furthermore, another study also demonstrated D2R over-activation reduces spine density via GluN2B-dependent pathways in mice (Jia et al., 2013). The recent manuscript of Zhou et al. showed that GluN2B hypofunction is highly related to the reduction of DISC1. Interestingly, DISC1 binds to D2R, and the binding site is located at amino acid positions 211–225 (Su et al., 2014), which is close to the GluN2B binding site and also located in the third intracellular loop of D2R. Primary cell culture studies have shown that D2R and DISC1 can form a complex, which is regulated by the activity of D2R (Su et al., 2014). Studies have shown that increased numbers of D2R-DISC1 complexes can be identified in post-mortem brains from schizophrenia patients and that interruption of D2R-DISC1 complex is correlated with antipsychotic effects in several mouse models (Dahoun et al., 2017). Additionally, phosphorylation of GSK-3α/β has been confirmed to be affected by D2R-DISC1 complex (Su et al., 2014). Therefore, GluN2B might interact with DISC1 through D2R and regulate its downstream GSK-3α/β signaling pathways. Furthermore, it is well known that D2R is one of the main targets of psychotherapy for schizophrenia and virtually all antipsychotic drugs have D2R antagonistic properties. Therefore, the involvement of D2R can connect DISC1 and GluN2B and provide a potential target for schizophrenia therapy. Author contributions All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment.

          Glutamate is the primary excitatory neurotransmitter in mammalian brain. Disturbances in glutamate-mediated neurotransmission have been increasingly documented in a range of neuropsychiatric disorders including schizophrenia, substance abuse, mood disorders, Alzheimer's disease, and autism-spectrum disorders. Glutamatergic theories of schizophrenia are based on the ability of N-methyl-D-aspartate receptor (NMDAR) antagonists to induce schizophrenia-like symptoms, as well as emergent literature documenting disturbances of NMDAR-related gene expression and metabolic pathways in schizophrenia. Research over the past two decades has highlighted promising new targets for drug development based on potential pre- and postsynaptic, and glial mechanisms leading to NMDAR dysfunction. Reduced NMDAR activity on inhibitory neurons leads to disinhibition of glutamate neurons increasing synaptic activity of glutamate, especially in the prefrontal cortex. Based on this mechanism, normalizing excess glutamate levels by metabotropic glutamate group 2/3 receptor agonists has led to potential identification of the first non-monoaminergic target with comparable efficacy as conventional antipsychotic drugs for treating positive and negative symptoms of schizophrenia. In addition, NMDAR has intrinsic modulatory sites that are active targets for drug development, several of which show promise in preclinical/early clinical trials targeting both symptoms and cognition. To date, most studies have been done with orthosteric agonists and/or antagonists at specific sites. However, allosteric modulators, both positive and negative, may offer superior efficacy with less danger of downregulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of distinct NMDA receptor subtypes at central synapses.

            Most excitatory synapses in the brain use the neurotransmitter glutamate to carry impulses between neurons. During fast transmission, glutamate usually activates a mixture of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the postsynaptic cell. Experimental scrutiny of NMDARs provides insight into their involvement in excitatory synaptic transmission and related processes such as as synaptic plasticity, neural development, and pain perception. There is increasing awareness that subtle variation in NMDAR properties is imparted by specific receptor subunits, and recent studies have started to provide perspective into some of the discrete tasks carried out by individual receptor subtypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data.

              N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential in numerous CNS disorders ranging from acute neurodegeneration (e.g. stroke and trauma), chronic neurodegeneration (e.g. Parkinson's disease, Alzheimer's disease, Huntington's disease, ALS) to symptomatic treatment (e.g. epilepsy, Parkinson's disease, drug dependence, depression, anxiety and chronic pain). However, many NMDA receptor antagonists also produce highly undesirable side effects at doses within their putative therapeutic range. This has unfortunately led to the conclusion that NMDA receptor antagonism is not a valid therapeutic approach. However, memantine is clearly an uncompetitive NMDA receptor antagonist at therapeutic concentrations achieved in the treatment of dementia and is essentially devoid of such side effects at doses within the therapeutic range. This has been attributed to memantine's moderate potency and associated rapid, strongly voltage-dependent blocking kinetics. The aim of this review is to summarise preclinical data on memantine supporting its mechanism of action and promising profile in animal models of chronic neurodegenerative diseases. The ultimate purpose is to provide evidence that it is indeed possible to develop clinically well tolerated NMDA receptor antagonists, a fact reflected in the recent interest of several pharmaceutical companies in developing compounds with similar properties to memantine.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                05 September 2018
                2018
                : 11
                : 315
                Affiliations
                Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong , Wollongong, NSW, Australia
                Author notes

                Edited by: Rolf Sprengel, Max-Planck-Institut für Medizinische Forschung, Germany

                Reviewed by: Dragos Inta, Zentralinstitut für Seelische Gesundheit (ZI), Germany

                *Correspondence: Xu-Feng Huang xhuang@ 123456uow.edu.au
                Article
                10.3389/fnmol.2018.00315
                6134048
                58bf6592-51de-4a81-8447-56448ab8598d
                Copyright © 2018 Xie and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 June 2018
                : 16 August 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 25, Pages: 3, Words: 1981
                Categories
                Neuroscience
                General Commentary

                Neurosciences
                glun2b,disc1,dopamine d2 receptor,schizophrenia,nmdar agonist
                Neurosciences
                glun2b, disc1, dopamine d2 receptor, schizophrenia, nmdar agonist

                Comments

                Comment on this article