13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating microRNA changes in patients with impaired glucose regulation

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          We analysed if levels of four miRNAs would change after a lifestyle intervention involving dietary and exercises in prediabetes. MiRNAs previously shown to be associated with diabetes (Let-7a, Let-7e, miR-144 and miR-92a) were extracted from serum pre- and post-intervention. mRNA was extracted from fat-tissue for gene expression analyses. The intervention resulted in increased Let-7a and miR-92a. We found correlations between miRNAs and clinical variables (triglycerides, cholesterol, insulin, weight and BMI). We also found correlations between miRNAs and target genes, revealing a link between miR-92a and IGF system. A lifestyle intervention resulted in marked changes in miRNAs. The association of miRNAs with insulin and the IGF system (both receptors and binding proteins) may represent a mechanism of regulating IGFs metabolic actions.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.

          MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Here, we show that the miR-17approximately92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels (angiogenesis). Forced overexpression of miR-92a in endothelial cells blocked angiogenesis in vitro and in vivo. In mouse models of limb ischemia and myocardial infarction, systemic administration of an antagomir designed to inhibit miR-92a led to enhanced blood vessel growth and functional recovery of damaged tissue. MiR-92a appears to target mRNAs corresponding to several proangiogenic proteins, including the integrin subunit alpha5. Thus, miR-92a may serve as a valuable therapeutic target in the setting of ischemic disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice.

            MicroRNAs (miRNAs) are small noncoding RNAs that regulate protein expression at post-transcriptional level. We hypothesized that a specific pool of endothelial miRNAs could be selectively regulated by flow conditions and inflammatory signals, and as such be involved in the development of atherosclerosis. To identify miRNAs, called atheromiRs, which are selectively regulated by shear stress and oxidized low-density lipoproteins (oxLDL), and to determine their role in atherogenesis. Large-scale miRNA profiling in HUVECs identified miR-92a as an atheromiR candidate, whose expression is preferentially upregulated by the combination of low shear stress (SS) and atherogenic oxLDL. Ex vivo analysis of atheroprone and atheroprotected areas of mouse arteries and human atherosclerotic plaques demonstrated the preferential expression of miR-92a in atheroprone low SS regions. In Ldlr(-/-) mice, miR-92a expression was markedly enhanced by hypercholesterolemia, in particular in atheroprone areas of the aorta. Assessment of endothelial inflammation in gain- and loss-of-function experiments targeting miR-92a expression revealed that miR-92a regulated endothelial cell activation by oxLDL, more specifically under low SS conditions, which was associated with modulation of Kruppel-like factor 2 (KLF2), Kruppel-like factor 4 (KLF4), and suppressor of cytokine signaling 5. miR-92a expression was regulated by signal transducer and activator of transcription 3 in SS- and oxLDL-dependent manner. Furthermore, specific in vivo blockade of miR-92a expression in Ldlr(-/-) mice reduced endothelial inflammation and altered the development of atherosclerosis, decreasing plaque size and promoting a more stable lesion phenotype. Upregulation of miR-92a by oxLDL in atheroprone areas promotes endothelial activation and the development of atherosclerotic lesions. Therefore, miR-92a antagomir seems as a new atheroprotective therapeutic strategy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links

              Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead to heart failure through a variety of mechanisms, including myocardial infarction and chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intracellular signaling pathways, energy production, redox status, increased susceptibility to ischemia, and extracellular matrix remodeling. The close relationship between type 2 DM and CVD has led to the common soil hypothesis, postulating that both conditions share common genetic and environmental factors influencing this association. However, although the common risk factors of both CVD and type 2 DM, such as obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be identified in the majority of affected patients, less is known about how these factors influence both conditions, so that efforts are still needed for a more comprehensive understanding of this relationship. The genetic, epigenetic, and environmental backgrounds of both type 2 DM and CVD have been more recently studied and updated. However, the underlying pathogenetic mechanisms have seldom been investigated within the broader shared background, but rather studied in the specific context of type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 DM and CVD are not entirely understood and many aspects still require elucidation, an integrated description of the genetic, epigenetic, and environmental influences involved in the concomitant development of both diseases is of paramount importance to shed new light on the interlinks between type 2 DM and CVD. This review addresses the current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation has been implicated in both disease conditions, either etiologically or as cause for their progression. Understanding the links between these disorders may help to drive future research toward an integrated pathophysiological approach and to provide future directions in the field.
                Bookmark

                Author and article information

                Journal
                Adipocyte
                Adipocyte
                Adipocyte
                Taylor & Francis
                2162-3945
                2162-397X
                4 August 2020
                2020
                4 August 2020
                : 9
                : 1
                : 443-453
                Affiliations
                [a ]The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester;
                [b ]Department of Diabetes and Endocrinology, Salford Royal Hospital; , Salford, UK
                [c ]Biomolecular Sciences Research Centre, Sheffield Hallam University; , Sheffield, UK
                [d ]Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope; , Duarte, CA, USA
                Author notes
                CONTACT Adrian H. Heald adrian.heald@ 123456manchester.ac.uk Department of Diabetes and Endocrinology, Salford Royal Hospital; , SalfordM6 8HD, UK
                Author information
                https://orcid.org/0000-0003-3818-3167
                https://orcid.org/0000-0002-0239-5064
                https://orcid.org/0000-0002-4647-3140
                https://orcid.org/0000-0002-1404-873X
                https://orcid.org/0000-0001-9026-7726
                https://orcid.org/0000-0002-1331-1524
                https://orcid.org/0000-0002-3291-1090
                https://orcid.org/0000-0002-9537-4050
                Article
                1798632
                10.1080/21623945.2020.1798632
                7469475
                32752917
                58db0666-f91d-4adc-ade1-796ec10d04cc
                © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 4, Tables: 1, References: 56, Pages: 11
                Categories
                Brief Report
                Brief Report

                circulating micrornas,pre-diabetes,impaired glucose regulation (igr),lifestyle change

                Comments

                Comment on this article