10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of a nutraceutical treatment on diabetic rats with targeted and CE-MS non-targeted approaches

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism.

          Elevations in branched-chain amino acids (BCAAs) in human obesity were first reported in the 1960s. Such reports are of interest because of the emerging role of BCAAs as potential regulators of satiety, leptin, glucose, cell signaling, adiposity, and body weight (mTOR and PKC). To explore loss of catabolic capacity as a potential contributor to the obesity-related rises in BCAAs, we assessed the first two enzymatic steps, catalyzed by mitochondrial branched chain amino acid aminotransferase (BCATm) or the branched chain alpha-keto acid dehydrogenase (BCKD E1alpha subunit) complex, in two rodent models of obesity (ob/ob mice and Zucker rats) and after surgical weight loss intervention in humans. Obese rodents exhibited hyperaminoacidemia including BCAAs. Whereas no obesity-related changes were observed in rodent skeletal muscle BCATm, pS293, or total BCKD E1alpha or BCKD kinase, in liver BCKD E1alpha was either unaltered or diminished by obesity, and pS293 (associated with the inactive state of BCKD) increased, along with BCKD kinase. In epididymal fat, obesity-related declines were observed in BCATm and BCKD E1alpha. Plasma BCAAs were diminished by an overnight fast coinciding with dissipation of the changes in adipose tissue but not in liver. BCAAs also were reduced by surgical weight loss intervention (Roux-en-Y gastric bypass) in human subjects studied longitudinally. These changes coincided with increased BCATm and BCKD E1alpha in omental and subcutaneous fat. Our results are consistent with the idea that tissue-specific alterations in BCAA metabolism, in liver and adipose tissue but not in muscle, may contribute to the rise in plasma BCAAs in obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

            Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological significance of endogenous methylarginines that inhibit nitric oxide synthases.

              The guanidino-methylated arginine analogue NG monomethyl-L-arginine (L-NMMA) has been the standard nitric oxide synthase inhibitor used to evaluate the role of the L-arginine:nitric oxide pathway. However, L-NMMA and other methylated arginine residues are also synthesised in vivo by the action of a family of enzymes known as protein arginine methyltransferases. Proteolysis of proteins containing methylated arginine residues releases free methylarginine residues into the cytosol from where they may pass out of the cell into plasma. Of the three known methylarginine residues produced in mammals only asymmetrically methylated forms (L-NMMA and asymmetric dimethylarginine (ADMA)) but not symmetrically methylated arginine (symmetric dimethylarginine (SDMA)) inhibit nitric oxide synthase (NOS). We and others have proposed that endogenously produced asymmetrically methylated arginines may modulate NO production and that the accumulation of these residues in disease states may contribute to pathology. The activity of the enzyme dimethylarginine dimethylaminohydrolase that metabolises asymmetric methylarginines may be of critical importance in affecting NO pathways in health or disease.
                Bookmark

                Author and article information

                Journal
                Metabolomics
                Metabolomics
                Springer Nature
                1573-3882
                1573-3890
                March 2013
                August 12 2011
                : 9
                : S1
                : 188-202
                Article
                10.1007/s11306-011-0351-y
                58e941e7-2ab8-46a8-8517-3f7dca599815
                © 2011
                History

                Comments

                Comment on this article