The electron density, its gradient, and the Kohn-Sham orbital kinetic energy density are the local ingredients of a meta-generalized gradient approximation (meta-GGA). We construct a meta-GGA density functional for the exchange-correlation energy that satisfies exact constraints without empirical parameters. The exchange and correlation terms respect two paradigms: one- or two-electron densities and slowly varying densities, and so describe both molecules and solids with high accuracy, as shown by extensive numerical tests. This functional completes the third rung of "Jacob's ladder" of approximations, above the local spin density and GGA rungs.